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Abstract
A new method for combining several initial estimators of the regres-
sion function is introduced. Instead of building a linear or convex
optimized combination over a collection of basic estimators r1, . . . , rM ,
we use them as a collective indicator of the proximity between the
training data and a test observation. This local distance approach is
model-free and very fast. More specifically, the resulting collective es-
timator is shown to perform asymptotically at least as well in the L2

sense as the best basic estimator in the collective. Moreover, it does
so without having to declare which might be the best basic estimator
for the given data set. A companion R package called COBRA (stand-
ing for COmBined Regression Alternative) is presented (downloadable
on http://cran.r-project.org/web/packages/COBRA/index.html).
Substantial numerical evidence is provided on both synthetic and real
data sets to assess the excellent performance and velocity of our method
in a large variety of prediction problems.
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1 Introduction
Recent years have witnessed a growing interest in aggregated statistical proce-
dures, supported by a considerable research and thorough empirical evidence.
Indeed, the increasing number of available estimation and prediction meth-
ods (hereafter also denoted as machines) in a wide range of modern statistical
problems naturally suggests using some efficient strategy for combining pro-
cedures and estimators. If the combined strategy is known to be optimal in
some sense and relatively free of assumptions that are hard to evaluate, then
such a model-free strategy is a valuable research tool.

In this regard, numerous contributions have enriched the aggregation litera-
ture with various approaches, such as model selection aggregation (select the
optimal single estimator from a list), convex aggregation (searching for the op-
timal convex combination of given estimators, such as exponentially weighted
aggregates) and linear aggregation (selecting the optimal linear combination).

Model selection, linear-type aggregation strategies and related problems have
been studied by Catoni (2004), Juditsky and Nemirovski (2000), Nemirovski
(2000), Yang (2000, 2001, 2004), Györfi et al. (2002), and Wegkamp (2003).
Minimax results have been derived by Nemirovski (2000) and Tsybakov (2003),
leading to the notion of optimal rates of aggregation. Similar results can be
found in Bunea et al. (2007a). Further upper bounds for the risk in model
selection and convex aggregation have been established for instance by Audib-
ert (2004), Birgé (2006), and Dalalyan and Tsybakov (2008). An interesting
feature is that such aggregation problems may be treated within the scope of
L1-penalized least squares, as performed in Bunea et al. (2006, 2007a,b). This
kind of framework is also considered by van de Geer (2008) and Koltchinskii
(2009), with the L2 loss replaced by another convex loss. In the agregation
literature, let us also mention the work of Juditsky et al. (2005), Bunea and
Nobel (2008), and Baraud et al. (2013). More recently, specific models such
as single-index in Alquier and Biau (2013) and additive models in Guedj
and Alquier (2013) have been studied in the context of aggregation under a
sparsity assumption.

The present article investigates a distinctly different point of view, motivated
by the sense that nonlinear, data-dependent techniques are a source of an-
alytic flexibility and might improve over current aggregation procedures. In
this regard, consider the following example regarding classification problem:
If the ensemble of machines happens to include a strong one, lurking but un-
named in the collection of which many might be very weak machines, it might
make sense to consider a more sophisticated method than the previously cited
ones for pooling the information across the machines. Choosing to set aside
some of the machines, on some data-dependent criteria, seems only weakly
motivated, since the performance of the collective, retaining those suspect
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machines, might be quite good on a nearby data set. Similarly, searching for
some phantom strong machine in the collective could also be ruinous when
presented with new and different data.

Instead of choosing either of these options—selecting out weak performers,
searching for a hidden, universally strong performer—we propose an original
nonlinear method for combining the outcomes over some list of plausibly good
procedures. We call this combined scheme a regression collective over the
given basic machines. More specifically, we consider the problem of building a
new estimator by combiningM estimators of the regression function, thereby
exploiting an idea proposed in the context of classification by Mojirsheibani
(1999). Given a set of preliminary estimators r1, . . . , rM , the idea behind this
aggregation method is a “unanimity” concept, in that it is based on the values
predicted by r1, . . . , rM for the data and for a new observation x. In a nutshell,
a data point is considered to be “close” to x, and consequently, reliable for
contributing to the estimation of this new observation, if all estimators predict
values which are close to each other for x and this data item, i.e., not more
distant than a prespecified threshold ε. The predicted value corresponding to
this query point x is then set to the average of the responses of the selected
observations. More precisely, the average is over the original outcome values of
the selected observations, and not over the estimates provided by the several
machines for these observations.

To make the concept clear, consider the following toy example illustrated by
Figure 1. Assume we are given the observations plotted in circles, and the
values predicted by two known machines f1 and f2 (triangles pointing up and
down, respectively). The goal is to predict the response for the new point x
(along the dotted line). Set a threshold ε, the black solid circles are the data
points (xi, yi) within the two dotted intervals, i.e., such that for m = 1, 2,
|fm(xi)− fm(x0)| ≤ ε. Averaging the corresponding yi’s yields the prediction
for x (diamond).

We stress that the central and original idea behind our approach is that the
resulting regression predictor is a nonlinear, data-dependent function of the
basic predictors r1, . . . , rM . To the best of our knowledge there exists no
formalized procedure in the machine learning and aggregation literature that
operates as does ours.

Along with this paper, we release the software COBRA (Guedj, 2013) which
implements the method as an additional package to the statistical software R
(see R Core Team, 2013). COBRA is freely downloadable on the CRAN web-
site4. As detailed in Section 3, we undertook a lengthy series of numerical
experiments, over which COBRA proved extremely successful. These stunning
results lead us to believe that regression collectives can provide valuable in-
sights on a wide range of prediction problems. Further, these same results

4http://cran.r-project.org/web/packages/COBRA/index.html
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Figure 1: A toy example: Nonlinear aggregation of two primal estimators.
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(c) The collective operates.
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(d) Predicted value for the query point.
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demonstrate that COBRA has remarkable speed in terms of CPU timings. In
the context of high-dimensional (such as genomic) data, such velocity is crit-
ical, and in fact COBRA can natively take advantage of multi-core parallel
environments.

The paper is organized as follows. In Section 2, we describe the combined
estimator—the regression collective—and derive a non-asymptotic risk bound.
Next we present the main result, that is the collective is asymptotically at
least as good as any of the basic estimators. We also provide a rate of con-
vergence for our procedure which is faster than the usual nonparametric rate.
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Section 3 is devoted to the companion R package COBRA and presents bench-
marks of its excellent performance on both simulated and real data sets,
including high-dimensional models. We also show that COBRA compares fa-
vorably with two competitors, Super Learner (see the seminal paper van der
Laan et al., 2007) and exponentially weighted aggregation (among many other
references, see Dalalyan and Tsybakov, 2008), in that it performs similarly
in most situations, much better in some, while it is consistently faster in ev-
ery case (for the Super Learner). Finally, for ease of exposition, proofs are
collected in Section 4.

2 The combined estimator

2.1 Notation

Throughout the article, we assume to be given a training sample denoted by
Dn = {(X1, Y1), . . . , (Xn, Yn)}. Dn is composed of i.i.d. random variables
taking their values in Rd × R, and distributed as an independent prototype
pair (X, Y ) satisfying EY 2 <∞ (with the notation X = (X1, . . . , Xd)). The
space Rd is equipped with the standard Euclidean metric. Our goal is to
consistently estimate the regression function r?(x) = E[Y |X = x], x ∈ Rd,
using the data Dn.

To begin with, the original data set Dn is split into two data sequences
Dk = {(X1, Y1), . . . , (Xk, Yk)} and D` = {(Xk+1, Yk+1), . . . , (Xn, Yn)}, with
` = n − k ≥ 1. For ease of notation, the elements of D` are renamed
{(X1, Y1), . . . , (X`, Y`)}. There is a slight abuse of notation here, as the same
letter is used for both subsets Dk and D`—however, this should not cause any
trouble since the context is clear.

Now, suppose that we are given a collection of M ≥ 1 competing candidates
rk,1, . . . , rk,M to estimate r?. These basic estimators—basic machines—are as-
sumed to be generated using only the first subsample Dk. These machines can
be any among the researcher’s favorite toolkit, such as linear regression, ker-
nel smoother, SVM, Lasso, neural networks, naive Bayes, or random forests.
They could equally well be any ad hoc regression rules suggested by the ex-
perimental context. The essential idea is that these basic machines can be
parametric or nonparametric, or indeed semi-parametric, with possible tun-
ing rules. All what is asked for is that each of the rk,m(x), m = 1, . . . ,M , is
able to provide an estimation of r?(x) on the basis of Dk alone. Thus, any
collection of model-based or model-free machines are allowed, and the collec-
tion is here called the regression collective. Let us emphasize here that the
number of basic machinesM is considered as fixed throughout the document.
Thus the number of machines is not expected to grow and is typically of a
reasonable size (M is chosen of the order of 10 in Section 3).
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Given the collection of basic machines rk = (rk,1, . . . , rk,M), we define the
collective estimator Tn to be

Tn (rk(x)) =
∑̀
i=1

Wn,i(x)Yi, x ∈ Rd,

where the random weights Wn,i(x) take the form

Wn,i(x) =
1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∑`
j=1 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
. (2.1)

In this definition, ε` is some positive parameter and, by convention, 0/0 = 0.

The weighting scheme used in our regression collective is distinctive but not
obvious. Starting from Devroye et al. (1996) and Györfi et al. (2002), we see
that Tn is a local averaging estimator in the following sense: The value for
r?(x), that is, the estimated outcome at the query point x, is the unweighted
average over those Yi’s such that Xi is “close” to the query point. More
precisely, for each Xi in the sample D`, “close” means that the output at the
query point, generated from each basic machine, is within an ε` distance of
the output generated by the same basic machines at Xi. If a basic machine
evaluated at Xi is close to the basic machine evaluated at the query point
x, then the corresponding outcome Yi is included in the average, and not
otherwise. Also, as a further note of clarification: “Closeness” of the Xi is
not here to be understood in the Euclidean sense. It refers to closeness of the
basic machine outputs at the query point with basic machine outputs over all
points in the training data. Training points Xi’s that are close, in the basic
machine sense, to the corresponding basic machine output at the query point
contribute to the indicator function for the corresponding outcome Yi. This
discussion is motivated by the fact that a major issue in learning problems
consists in building up a metric which is suited to the data (see, e.g., the
monograph by Pekalska and Duin, 2005).

In this context, ε` plays the role of a smoothing parameter: Put differently,
in order to retain Yi, all basic estimators rk,1, . . . , rk,M have to deliver predic-
tions for the query point x which are in a ε`-neighborhood of the predictions
rk,1(Xi), . . . , rk,M(Xi). Note that the greater ε`, the more tolerant the pro-
cess. It turns out that the practical performance of Tn strongly relies on an
appropriate choice of ε`. This important question will thoroughly be discussed
in Section 3, where we devise an automatic (i.e., data-dependent) selection
strategy of ε`.

Next, we note that the subscript n in Tn may be a little confusing, since Tn
is a weighted average of the Yi’s in D` only. However, Tn depends on the
entire data set Dn, as the rest of the data is used to set up the original ma-
chines rk,1, . . . , rk,M . Finally, and most importantly, it should be noticed that
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the combined estimator Tn is nonlinear with respect to the basic estimators
rk,m’s. This makes it very different from techniques derived from model se-
lection or convex and linear aggregation literature. As such, it is inspired by
the preliminary work of Mojirsheibani (1999) in the supervised classification
context.

In addition, let us mention that, in the definition of the weights (2.1), all
original estimators are asked to have the same opinion on the importance
of the observation Xi (within the range of ε`) for the corresponding Yi to be
integrated in the combination Tn. However, this unanimity constraint may be
relaxed by imposing, for example, that a fixed fraction α ∈ {1/M, 2/M, . . . , 1}
of the machines agree on the importance of Xi. In that case, the weights take
the more sophisticated form

Wn,i(x) =
1{∑M

m=1 1{|rk,m(x)−rk,m(Xi)|≤ε`}≥Mα}∑`
j=1 1{∑M

m=1 1{|rk,m(x)−rk,m(Xj)|≤ε`}≥Mα}
.

It turns out that adding the parameter α does not change the asymptotic
properties of Tn, provided α→ 1. Thus, to keep a sufficient degree of clarity
in the mathematical statements and subsequent proofs, we have decided to
consider only the case α = 1 (i.e., unanimity). We leave as an exercise
the possibility to extend the results to more general values of α. On the
other hand, as highligthed by Section 3, α has a nonnegligible impact on
the performance of the combined estimator. Accordingly, we will discuss in
Section 3 an automatic procedure to select this extra parameter.

2.2 Theoretical performance

This section is devoted to the study of some asymptotic and nonasymptotic
properties of the combined estimator Tn, whose quality will be assessed by
the quadratic risk

E |Tn (rk(X))− r?(X)|2 .

Here and later, E denotes the expectation with respect to both X and the
sample Dn. Everywhere in the document, it is assumed that E|rk,m(X)|2 <
∞ for all m = 1, . . . ,M . Moreover, we shall need the following technical
requirement: For any m = 1, . . . ,M ,

r−1
k,m((t,+∞)) ↘

t↑+∞
∅ and r−1

k,m((−∞, t)) ↘
t↓−∞

∅. (2.2)

It is stressed that this is a mild assumption which is met, for example, when-
ever the machines are bounded. Throughout, we let

T (rk(X)) = E [Y |rk(X)]
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and note that, by the very definition of the L2 conditional expectation,

E |T (rk(X))− Y |2 ≤ inf
f
E |f(rk(X))− Y |2 , (2.3)

where the infimum is taken over all square integrable functions of rk(X).

Our first result is a non-asymptotic inequality, which states that the combined
estimator behaves as well as the best one in the original list, within a term
measuring how far Tn is from T .

Proposition 2.1. Let rk = (rk,1, . . . , rk,M) be the collection of basic estima-
tors, and let Tn(rk(x)) be the combined estimator. Then, for all distributions
of (X, Y ) with EY 2 <∞,

E|Tn(rk(X))− r?(X)|2

≤ E|Tn(rk(X))− T (rk(X))|2 + inf
f
E|f(rk(X))− r?(X)|2,

where the infimum is taken over all square integrable functions of rk(X). In
particular,

E|Tn(rk(X))− r?(X)|2

≤ min
m=1,...,M

E|rk,m(X)− r?(X)|2 + E|Tn(rk(X))− T (rk(X))|2.

Note that since, for example, Proposition 2.1 holds for any square integrable
function of rk(X), this result allows to derive inequalities linking to any ex-
isting aggregation procedure: One may consider linear or convex aggregation
as well.

Proposition 2.1 reassures us on the performance of Tn with respect to the basic
machines, whatever the distribution of (X, Y ) is and regardless of which initial
estimator is actually the best. The term minm=1,...,M E|rk,m(X)−r?(X)|2 may
be regarded as a bias term, whereas the term E|Tn(rk(X))− T (rk(X))|2 is a
variance-type term, which can be asymptotically neglected.

Proposition 2.2. Assume that ε` → 0 and `εM` →∞ as `→∞. Then

E |Tn (rk(X))− T (rk(X))|2 → 0 as `→∞,

for all distributions of (X, Y ) with EY 2 <∞. Thus,

lim sup
`→∞

E |Tn (rk(X))− r?(X)|2 ≤ min
m=1,...,M

E |rk,m(X)− r?(X)|2 .

This result is remarkable, for at least two reasons. Firstly, it shows that, in
terms of predictive quadratic risk, the combined estimator does asymptoti-
cally at least as well as the best primitive machine. Secondly, the result is
universal, in the sense that it is true for all distributions of (X, Y ), without
exceptions.
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This is especially interesting because the performance of any estimation pro-
cedure eventually depends upon some model and smoothness assumptions
on the observations. For example, a linear regression fit performs well if
the distribution is truly linear, but may behave poorly otherwise. Similarly,
the Lasso procedure is known to do a good job for non-correlated designs
(see van de Geer, 2008), with no clear guarantee however in adversarial sit-
uations. Likewise, rates of convergence of nonparametric procedures such as
the k-nearest neighbor method, kernel estimators and random forests dramat-
ically deteriorate as the ambient dimension increases, but may be significantly
improved if the true underlying dimension is reasonable. This phenomenon
is thoroughly analyzed for the random forests algorithm in Biau (2012).

The universal result exhibited in Proposition 2.2 does not require any regu-
larity assumption on the basic machines. However, this universality comes at
the price that we have no guarantee on the rate of convergence of the variance
term. Nevertheless, assuming some light additional smoothness conditions,
one has the following result.

Theorem 2.1. Assume that Y and the basic machines rk are bounded by
some constant R. Assume moreover that there exists a constant L ≥ 0 such
that, for every k ≥ 1,

|T (rk(x))− T (rk(y))| ≤ L|rk(x)− rk(y)|, x,y ∈ Rd.

Then, with the choice ε` ∝ `−
1

M+2 , one has

E |Tn (rk(X))− r?(X)|2 ≤ min
m=1,...,M

E |rk,m(X)− r?(X)|2 + C`−
2

M+2 ,

for some positive constant C = C(R,L), independent of k.

Theorem 2.1 offers an oracle-type inequality with leading constant 1, stating
that the risk of the regression collective is bounded by the lowest risk amongst
those of the basic machines, i.e., our procedure mimics the performance of
the oracle over the set {rk,m : m = 1, . . . ,M}, plus a remainder term of the
order of `−2/(M+2) which is the price to pay for aggregating. In our setting,
it is important to observe that this term has a limited impact. As a mat-
ter of fact, since the number of basic machines M is assumed to be fixed
and not too large (the implementation presented in Section 3 considers M
at most 6), the remainder term is negligible compared to the standard non-
parametric rate `−2/(d+2) in dimension d. While the rate `−2/(d+2) is affected
by the curse of dimensionality when d is large, this is not the case for the
term `−2/(M+2). Obviously, provided that the distribution of (X, Y ) may be
described parametrically and that one of the initial estimators is adapted to
this distribution, faster rates of the order of 1/` could emerge in the bias
term. Nonetheless, the regression collective is designed for much more adver-
sarial regression problems, hence the rate exhibited in Theorem 2.1 appears
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satisfactory. As a final comment to this result, we stress that our approach
carries no assumption on the random design and mild ones over the primal
estimators, whereas stringent conditions over the deterministic design and/or
the primal estimators are necessary to prove similar results in other aggrega-
tion procedures such as the Lasso (Bunea et al., 2007b; van de Geer, 2008).

The crux is that model and smoothness assumptions are usually unverifiable,
especially in modern high-dimensional and large scale data sets. To circum-
vent this difficulty, people often try many different methods and retain the
one exhibiting the best empirical results. Our aggregation strategy offers a
nice alternative, in the sense that if one of the initial estimators is consistent
for a given class M of distributions, then, under light smoothness assump-
tions, Tn inherits the same property. To be more precise, assume that the
aggregation problem is well-specified, i.e., that one of the original estimators,
say rk,m0 , satisfies

E |rk,m0(X)− r?(X)|2 → 0 as k →∞,

for all distribution of (X, Y ) in some classM. Then, under the assumptions
of Theorem 2.1, with the choice ε` ∝ `−

1
M+2 , one has

lim
k,`→∞

E |Tn (rk(X))− r?(X)|2 = 0.

3 Implementation and numerical studies
This section is devoted to the implementation of the described method. Its ex-
cellent performance is then assessed in a series of experiments. The companion
R package COBRA (standing for COmBined Regression Alternative) is available
on the CRAN website http://cran.r-project.org/web/packages/COBRA/
index.html, for Linux, Mac and Windows platforms, see Guedj (2013).
COBRA includes a parallel option, allowing for improved performance on
multi-core computers (see Knaus, 2010).

As raised in the previous section, a precise calibration of the smoothing pa-
rameter ε` is crucial. Clearly, a too small value will discard many machines
and most weights will be zero. Conversely, a large value sets all weights to
1/Σ with

Σ =
∑̀
j=1

1⋂M
m=1{|rk,m(x)−rk,m(Xj)|≤ε`},

giving the naive predictor that does not account for any new data point and
predicts the mean over the sample D`. We also consider a relaxed version
of the unanimity constraint: Instead of requiring global agreement over the
implemented machines, consider some α ∈ (0, 1] and keep observation Yi in

10

http://cran.r-project.org/web/packages/COBRA/index.html
http://cran.r-project.org/web/packages/COBRA/index.html


the construction of Tn if and only if at least a proportion α of the machines
agree on the importance of Xi. This parameter requires as well a precise
calibration. To understand better, consider the following toy example: On
some data set, assume most machines but one have nice predictive perfor-
mance. For any new data point, requiring global agreement will fail since
the pool of machines is heterogeneous. In this regard, α should be seen as
a measure of homogeneity: If a small value is selected, it should be seen as
an indicator that some machines perform (possibly much) better than some
others. Conversely, a large value indicates that the predictive abilities of the
machines are close.

A natural measure of the risk in the prediction context is the empirical
quadratic loss, namely

R̂(Ŷ) =
1

p

p∑
j=1

(Ŷj − Yj)2,

where Ŷ = (Ŷ1, . . . , Ŷp) is the vector of predicted values for the responses
Y1, . . . , Yp and {(Xj, Yj)}pj=1 is a testing sample. We adopted the following
protocol: Using a simple data-splitting device, ε` and α are chosen by min-
imizing the empirical risk R̂ over the set {ε`,min, . . . , ε`,max} × {1/M, . . . , 1},
where ε`,min = 10−300 and ε`,max is proportional to the largest absolute dif-
ference between two predictions of the pool of machines. In the package,
#{ε`,min, . . . , ε`,max} may be modified by the user, otherwise the default value
200 is chosen. It is also possible to choose either a linear or a logistic scale.
Figure 2 illustrates the discussion about the choice of ε` and α.

By default, COBRA includes the following classical packages dealing with re-
gression estimation and prediction. However, note that the user has the choice
to modify this list to her/his own convenience:

• Lasso (R package lars, see Hastie and Efron, 2012).

• Ridge regression (R package ridge, see Cule, 2012).

• k-nearest neighbors (R package FNN, see Li, 2013).

• CART algorithm (R package tree, see Ripley, 2012).

• Random Forests algorithm (R package randomForest, see Liaw and
Wiener, 2002).

First, COBRA is benchmarked on synthetic data. For each of the following
eight models, two designs are considered: Uniform over (−1, 1)d (referred to
as “Uncorrelated” in Table 1, Table 2 and Table 3), and Gaussian with mean 0
and covariance matrix Σ with Σij = 2−|i−j| (“Correlated”). Models considered
cover a wide spectrum of contemporary regression problems. Indeed, Model 1
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is a toy example, Model 2 comes from van der Laan et al. (2007), Model 3 and
Model 4 appear in Meier et al. (2009). Model 5 is somewhat a classic setting.
Model 6 is about predicting labels, Model 7 is inspired by high-dimensional
sparse regression problems. Finally, Model 8 deals with probability estima-
tion, linking with nonparametric model-free approaches such as in Malley
et al. (2012). In the sequel, we let N (µ, σ2) denote a Gaussian random vari-
able with mean µ and variance σ2. In the simulations, the training data set
was usually set to 80% of the whole sample, then split into two equal parts
corresponding to Dk and D`.

Model 1. n = 800, d = 50, Y = X2
1 + exp(−X2

2 ).

Model 2. n = 600, d = 100, Y = X1X2+X2
3−X4X7+X8X10−X2

6 +N (0, 0.5).

Model 3. n = 600, d = 100, Y = − sin(2X1) + X2
2 + X3 − exp(−X4) +

N (0, 0.5).

Model 4. n = 600, d = 100, Y = X1 + (2X2 − 1)2 + sin(2πX3)/(2 −
sin(2πX3))+sin(2πX4)+2 cos(2πX4)+3 sin2(2πX4)+4 cos2(2πX4)+N (0, 0.5).

Model 5. n = 700, d = 20, Y = 1{X1>0} + X3
2 + 1{X4+X6−X8−X9>1+X14} +

exp(−X2
2 ) +N (0, 0.5).

Model 6. n = 500, d = 30, Y =
∑10

k=1 1{X3
k<0} − 1{N (0,1)>1.25}.

Model 7. n = 600, d = 300, Y = X2
1 + X2

2X3 exp(−|X4|) + X6 − X8 +
N (0, 0.5).

Model 8. n = 600, d = 50, Y = 1{X1+X3
4+X9+sin(X12X18)+N (0,0.1)>0.38}.

Table 1 presents the mean quadratic error and standard deviation over 100
independent replications, for each model and design. Bold number identifies
the lowest error, i.e., the best competitor. Boxplots of errors are presented in
Figure 3 and Figure 4. Further, Figure 5 and Figure 6 shows the predictive
capacities of COBRA, and Figure 7 depicts its ability to reconstruct the func-
tional dependence over the covariates in the context of additive regression,
assessing the striking performance of our approach in a wide spectrum of sta-
tistical settings. A remarkable fact is that COBRA performs at least as well as
the best machine, and improves even significantly in Model 3, Model 5 and
Model 6.

Next, since more and more problems in contemporary statistics involve high-
dimensional data, we have tested the abilities of COBRA in that context. As
highlighted by Table 4 and Figure 8, the main message is that COBRA is
perfectly able to deal with high-dimensional data, provided that it is fed
with machines which are known to perform well in such situations (possibly
at the price of a sparsity assumption). In that context, we conducted 200
independent replications for the three following models:
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Model 9. n = 500, d = 1000, Y = X1+3X2
3−2 exp(−X5)+X6. Uncorrelated

design.

Model 10. n = 500, d = 1000, Y = X1 +3X2
3−2 exp(−X5)+X6. Correlated

design

Model 11. n = 500, d = 1500, Y = exp(−X1) + exp(X1) +
∑d

j=2X
j/100
j .

Uncorrelated design.

A legitimate question that arises is where one should cut the initial sample
Dn? In other words, for a given data set of size n, what is the optimal value for
k? A naive approach is to cut the initial sample in two halfs (i.e., k = n/2):
This appears to be satisfactory provided that n is large enough, which may
be too much of an unrealistic assumption in numerous experimental settings.
A more involved choice is to adopt a random cut scheme, where k is chosen
uniformly in {1, . . . , n}. Figure 9 presents the boxplot of errors of the five
default machines and COBRA with that random cutting strategy, and also
shows the risk of COBRA with respect to k: To illustrate this phenomenon,
we tested a thousand random cuts on the following Model 12. As showed in
Figure 9, for that particular model, the best value seems to be near 3n/4.

Model 12. n = 1200, d = 10, Y = X1+3X2
3−2 exp(−X5)+X6. Uncorrelated

design.

The average risk of COBRA on a thousand replications of Model 12 is 0.3124.
Since this delivered a thousand prediction vectors, a natural idea is to take
their mean or median. The risk of the mean is 0.2306, and the median has
an even better risk (0.2184). Since a random cut scheme may generate some
unstability, we advise practitioners to compute a few COBRA estimators, then
compute the mean or median vector of their predictions.

Next, we compare COBRA to the Super Learner algorithm (Polley and van der
Laan, 2012). This widespread algorithm was first described in van der Laan
et al. (2007) and extended in Polley and van der Laan (2010). Super Learner
is used in this section as the key competitor to our method. In a nutshell,
the Super Learner trains basic machines r1, . . . , rM on the whole sample Dn.
Then, following a V -fold cross-validation procedure, Super Learner adopts a
V -blocks partition of the set {1, . . . , n} and computes the matrix

H = (Hij)
1≤j≤M
1≤i≤n ,

where Hij is the prediction for the query point Xi made by machine j trained
on all remaining V − 1 blocks, i.e., excluding the block containing Xi. The
Super Learner estimator is then

SL =
M∑
j=1

α̂jrj,

13



where

α̂ ∈ arg inf
α∈ΛM

n∑
i=1

|Yi − (Hα)i|2,

with ΛM denoting the simplex

ΛM =

{
α ∈ RM :

M∑
j=1

αj = 1, αj ≥ 0 for any j = 1, . . . ,M

}
.

Although this convex aggregation scheme is significantly different from our
theoretical setting, we feel close to the approach used in the SuperLearner
package, allowing the user to aggregate as many machines as desired, then
blending them to deliver predictive outcomes. For that reason, it is reasonable
to deploy Super Learner as a benchmark in our study of regression collectives.

Table 2 summarizes the performance of COBRA and SuperLearner (used with
SL.randomForest, SL.ridge and SL.glmnet, for the fairness of the compari-
son) through the described protocol. Both methods compete on similar terms
in most models, although COBRA proves much more efficient on correlated de-
sign in Model 2 and Model 4. This already remarkable result is to be stressed
by the flexibility and velocity showed by COBRA. Indeed, as emphasized in
Table 3, without even using the parallel option, COBRA obtains similar or
better results than SuperLearner roughly five times faster. Note also that
COBRA suffers from a disadvantage: SuperLearner is built on the whole sam-
ple Dn whereas COBRA only uses ` < n data points. Finally, observe that the
algorithmic cost of computing the random weights on ntest query points is
`×M × ntest operations. In the package, those calculations are handled in C
language for optimal speed performance.

Super Learner is a natural competitor on the implementation side. However,
on the theoretical side, it can hardly be considered as a complete benchmark:
Thus, we compared COBRA to the popular exponentially weighted aggrega-
tion method (EWA). We implemented the following version of the EWA: For
all preliminary estimators rk,1, . . . , rk,M , their empirical risks R̂1, . . . , R̂M are
computed on a subsample of D` and the EWA is

EWAβ : x 7→
M∑
j=1

ŵjrk,j(x), x ∈ Rd,

where

ŵj =
exp(−βR̂j)∑M
i=1 exp(−βR̂i)

, j = 1, . . . ,M.

The temperature parameter β > 0 is selected by minimizing the empirical
risk of EWAβ over a data-based grid, in the same spirit as the selection of ε`

14



and α. We conducted 200 independent replications, on Models 9 to 12. The
conclusion is that COBRA outperforms the EWA estimator in some models, and
delivers similar performance in others, as shown in Figure 10 and Table 5.

Finally, COBRA is used to process the following real-life data sets:

• Concrete Slump Test5 (see Yeh, 2007).

• Concrete Compressive Strength6 (see Yeh, 1998).

• Wine Quality7 (see Cortez et al., 2009). Note that this data set involves
supervised classification and opens a line for future research since COBRA
is mainly devoted to regression.

The good predictive performance of COBRA is summarized in Figure 11 and
errors are presented in Figure 12. For every data set, the sample is divided
into a training set (90%) and a testing set (10%) on which the predictive
performance is evaluated. Boxplots are obtained by shuffling the data points
a hundred times.

As a conclusion to this thorough experimental protocol, it is our belief that
COBRA sets a new gold standard, both in terms of performance and velocity,
for prediction-oriented problems in the context of regression.

5http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.
6http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength.
7http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
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Table 1: Quadratic errors of the implemented machines and COBRA. Means
and standard deviations over 100 independent replications.

Uncorr. lars ridge fnn tree rf COBRA

Model 1 m. 0.1561 0.1324 0.1585 0.0281 0.0330 0.0259
sd. 0.0123 0.0094 0.0123 0.0043 0.0033 0.0036

Model 2 m. 0.4880 0.2462 0.3070 0.1746 0.1366 0.1645
sd. 0.0676 0.0233 0.0303 0.0270 0.0161 0.0207

Model 3 m. 0.2536 0.5347 1.1603 0.4954 0.4027 0.2332
sd. 0.0271 0.4469 0.1227 0.0772 0.0558 0.0272

Model 4 m. 7.6056 6.3271 10.5890 3.7358 3.5262 3.3640
sd. 0.9419 1.0800 0.9404 0.8067 0.3223 0.5178

Model 5 m. 0.2943 0.3311 0.5169 0.2918 0.2234 0.2060
sd. 0.0214 0.1012 0.0439 0.0279 0.0216 0.0210

Model 6 m. 0.8438 1.0303 2.0702 2.3476 1.3354 0.8345
sd. 0.0916 0.4840 0.2240 0.2814 0.1590 0.1004

Model 7 m. 1.0920 0.5452 0.9459 0.3638 0.3110 0.3052
sd. 0.2265 0.0920 0.0833 0.0456 0.0325 0.0298

Model 8 m. 0.1308 0.1279 0.2243 0.1715 0.1236 0.1021
sd. 0.0120 0.0161 0.0189 0.0270 0.0100 0.0155

Corr. lars ridge fnn tree rf COBRA

Model 1 m. 2.3736 1.9785 2.0958 0.3312 0.5766 0.3301
sd. 0.4108 0.3538 0.3414 0.1285 0.1914 0.1239

Model 2 m. 8.1710 4.0071 4.3892 1.3609 1.4768 1.3612
sd. 1.5532 0.6840 0.7190 0.4647 0.4415 0.4654

Model 3 m. 6.1448 6.0185 8.2154 4.3175 4.0177 3.7917
sd. 11.9450 12.0861 13.3121 11.7386 12.4160 11.1806

Model 4 m. 60.5795 42.2117 51.7293 9.6810 14.7731 9.6906
sd. 11.1303 9.8207 10.9351 3.9807 5.9508 3.9872

Model 5 m. 6.2325 7.1762 10.1254 3.1525 4.2289 2.1743
sd. 2.4320 3.5448 3.1190 2.1468 2.4826 1.6640

Model 6 m. 1.2765 1.5307 2.5230 2.6185 1.2027 0.9925
sd. 0.1381 0.9593 0.2762 0.3445 0.1600 0.1210

Model 7 m. 20.8575 4.4367 5.8893 3.6865 2.7318 2.9127
sd. 7.1821 1.0770 1.2226 1.0139 0.8945 0.9072

Model 8 m. 0.1366 0.1308 0.2267 0.1701 0.1226 0.0984
sd. 0.0127 0.0143 0.0179 0.0302 0.0102 0.0144
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Table 2: Quadratic errors of
SuperLearner and COBRA. Means
and standard deviations over 100
independent replications.

Uncorr. SL COBRA

Model 1 m. 0.0541 0.0320
sd. 0.0053 0.0104

Model 2 m. 0.1765 0.3569
sd. 0.0167 0.8797

Model 3 m. 0.2081 0.2573
sd. 0.0282 0.0699

Model 4 m. 4.3114 3.7464
sd. 0.4138 0.8746

Model 5 m. 0.2119 0.2187
sd. 0.0317 0.0427

Model 6 m. 0.7627 1.0220
sd. 0.1023 0.3347

Model 7 m. 0.1705 0.3103
sd. 0.0260 0.0490

Model 8 m. 0.1081 0.1075
sd. 0.0121 0.0235

Corr. SL COBRA

Model 1 m. 0.8733 0.3262
sd. 0.2740 0.1242

Model 2 m. 2.3391 1.3984
sd. 0.4958 0.3804

Model 3 m. 3.1885 3.3201
sd. 1.5101 1.8056

Model 4 m. 25.1073 9.3964
sd. 7.3179 2.8953

Model 5 m. 5.6478 4.9990
sd. 7.7271 9.3103

Model 6 m. 0.8967 1.1988
sd. 0.1197 0.4573

Model 7 m. 3.0367 3.1401
sd. 1.6225 1.6097

Model 8 m. 0.1116 0.1045
sd. 0.0111 0.0216

Table 3: Average CPU-times
in seconds. No parallelization.
Means and standard deviations
over 10 independent replications.

Uncorr. SL COBRA

Model 1 m. 53.92 10.92
sd. 1.42 0.29

Model 2 m. 57.96 11.90
sd. 0.95 0.31

Model 3 m. 53.70 10.66
sd. 0.55 0.11

Model 4 m. 55.00 11.15
sd. 0.74 0.18

Model 5 m. 28.46 5.01
sd. 0.73 0.06

Model 6 m. 22.97 3.99
sd. 0.27 0.05

Model 7 m. 127.80 35.67
sd. 5.69 1.91

Model 8 m. 32.98 6.46
sd. 1.33 0.33

Corr. SL COBRA

Model 1 m. 61.92 11.96
sd. 1.85 0.27

Model 2 m. 70.90 14.16
sd. 2.47 0.57

Model 3 m. 59.91 11.92
sd. 2.06 0.41

Model 4 m. 63.58 13.11
sd. 1.21 0.34

Model 5 m. 31.24 5.02
sd. 0.86 0.07

Model 6 m. 24.29 4.12
sd. 0.82 0.15

Model 7 m. 145.18 41.28
sd. 8.97 2.84

Model 8 m. 31.31 6.24
sd. 0.73 0.11
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Table 4: Quadratic errors of the implemented machines and COBRA in high-
dimensional situations. Means and standard deviations over 200 independent
replications.

lars ridge fnn tree rf COBRA

Model 9 m. 1.5698 2.9752 3.9285 1.8646 1.5001 0.9996
sd. 0.2357 0.4171 0.5356 0.3751 0.2491 0.1733

Model 10 m. 5.2356 5.1748 6.1395 6.1585 4.8667 2.7076
sd. 0.6885 0.7139 0.9192 0.9298 0.6634 0.3810

Model 11 m. 0.1584 0.1055 0.1363 0.0058 0.0327 0.0049
sd. 0.0199 0.0119 0.0176 0.0010 0.0052 0.0009

Table 5: Quadratic errors of exponentially weighted aggregation (EWA) and
COBRA. 200 independent replications.

EWA COBRA

Model 9 m. 1.1712 1.1360
sd. 0.2090 0.2468

Model 10 m. 9.4789 12.4353
sd. 5.6275 9.1267

Model 11 m. 0.0244 0.0128
sd. 0.0042 0.0237

Model 12 m. 0.4175 0.3124
sd. 0.0513 0.0884
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Figure 2: Examples of calibration of parameters ε` and α. The bold point is
the minimum.

(a) Model 5, uncorrelated design.
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(b) Model 5, correlated design.

0 2 4 6 8 10 12

0
5

10
15

Epsilon

R
is

k

1 machine
2 machines
3 machines
4 machines
5 machines
6 machines

●

(c) Model 9.
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(d) Model 12.
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Figure 3: Boxplots of quadratic errors, uncorrelated design. From left to
right: lars, ridge, fnn, tree, randomForest, COBRA.
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(f) Model 6.
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(g) Model 7.
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(h) Model 8.
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Figure 4: Boxplots of quadratic errors, correlated design. From left to right:
lars, ridge, fnn, tree, randomForest, COBRA.
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(b) Model 2.
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(d) Model 4.
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(e) Model 5.
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(f) Model 6.
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(g) Model 7.
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(h) Model 8.
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Figure 5: Prediction over the testing set, uncorrelated design. The more
points on the first bissectrix, the better the prediction.
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(c) Model 3.
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(f) Model 6.
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(h) Model 8.
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Figure 6: Prediction over the testing set, correlated design. The more points
on the first bissectrix, the better the prediction.
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Figure 7: Examples of reconstruction of the functional dependencies, for co-
variates 1 to 4.

(a) Model 1, uncorrelated design.
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(b) Model 1, correlated design.
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(c) Model 3, uncorrelated design.
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(d) Model 3, correlated design.
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Figure 8: Boxplot of errors, high-dimensional models.
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(a) Boxplot of errors: Initial sample is ran-
domly cut (1000 replications of Model 12).
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Figure 10: Boxplot of errors: EWA vs COBRA
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(c) Model 11.
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Figure 11: Prediction over the testing set, real-life data sets.
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Figure 12: Boxplot of quadratic errors, real-life data sets.
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4 Proofs

4.1 Proof of Proposition 2.1

We have

E|Tn(rk(X))− r?(X)|2 = E|Tn(rk(X))− T (rk(X))|2 + E|T (rk(X))− r?(X)|2

− 2E[(Tn(rk(X))− T (rk(X)))(T (rk(X))− r?(X))].

As for the double product, notice that

E[(Tn(rk(X))− T (rk(X)))(T (rk(X))− r?(X))]

= E [E [(Tn(rk(X))− T (rk(X)))(T (rk(X))− r?(X))|rk(X),Dn]]

= E [(Tn(rk(X))− T (rk(X)))E [T (rk(X))− r?(X)|rk(X),Dn]] .

But

E[r?(X)|rk(X),Dn] = E[r?(X)|rk(X)]

(by independence of X and Dn)

= E[E[Y |X]|rk(X)]

= E[Y |rk(X)]

(since σ(rk(X)) ⊂ σ(X))

= T (rk(X)).

Consequently,

E[(Tn(rk(X))− T (rk(X)))(T (rk(X))− r?(X))] = 0

and

E|Tn(rk(X))− r?(X)|2 = E|Tn(rk(X))− T (rk(X))|2 + E|T (rk(X))− r?(X)|2.

Thus, by definition of the conditional expectation, and using the fact that
T (rk(X)) = E[r?(X)|rk(X)],

E|Tn(rk(X))−r?(X)|2 ≤ E|Tn(rk(X))−T (rk(X))|2+inf
f
E|f(rk(X))−r?(X)|2,

where the infimum is taken over all square integrable functions of rk(X). In
particular,

E|Tn(rk(X))− r?(X)|2

≤ min
m=1,...,M

E|rk,m(X)− r?(X)|2 + E|Tn(rk(X))− T (rk(X))|2,

as desired.
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4.2 Proof of Proposition 2.2

Note that the second statement is an immediate consequence of the first
statement and Proposition 2.1, therefore we only have to prove that

E |Tn (rk(X))− T (rk(X))|2 → 0 as `→∞.

We start with a technical lemma, whose proof can be found in the monograph
by Györfi et al. (2002).

Lemma 4.1. Let B(n, p) be a binomial random variable with parameters
n ≥ 1 and p > 0. Then

E
[

1

1 +B(n, p)

]
≤ 1

p(n+ 1)

and
E
[
1{B(n,p)>0}

B(n, p)

]
≤ 2

p(n+ 1)
.

For all distribution of (X, Y ), using the elementary inequality (a+ b+ c)2 ≤
3(a2 + b2 + c2), note that

E|Tn(rk(X))− T (rk(X))|2

= E

∣∣∣∣∣∑̀
i=1

Wn,i(X) (Yi − T (rk(Xi)) + T (rk(Xi))− T (rk(X)) + T (rk(X)))

− T (rk(X))

∣∣∣∣∣
2

≤ 3E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

(4.1)

+ 3E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

(4.2)

+ 3E

∣∣∣∣∣
(∑̀

i=1

Wn,i(X)− 1

)
T (rk(X))

∣∣∣∣∣
2

. (4.3)

Consequently, to prove the proposition, it suffices to establish that (4.1),
(4.2) and (4.3) tend to 0 as ` tends to infinity. This is done, respectively, in
Proposition 4.1, Proposition 4.2 and Proposition 4.3 below.

Proposition 4.1. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

= 0.
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Proof of Proposition 4.1. By the Cauchy-Schwarz inequality,

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

= E

∣∣∣∣∣∑̀
i=1

√
Wn,i(X)

√
Wn,i(X) (T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

≤ E

[∑̀
j=1

Wn,j(X)
∑̀
i=1

Wn,i(X) |T (rk(Xi))− T (rk(X))|2
]

= E

[∑̀
i=1

Wn,i(X) |T (rk(Xi))− T (rk(X))|2
]

:= An.

The function T is such that E[T 2(rk(X))] <∞. Therefore, it can be approx-
imated in an L2 sense by a continuous function with compact support, say
T̃ . This result may be found in many references, amongst them Györfi et al.
(2002, Theorem A.1). More precisely, for any η > 0, there exists a function
T̃ such that

E
∣∣∣T (rk(X))− T̃ (rk(X))

∣∣∣2 < η.

Consequently, we obtain

An = E

[∑̀
i=1

Wn,i(X)|T (rk(Xi))− T (rk(X))|2
]

≤ 3E

[∑̀
i=1

Wn,i(X)|T (rk(Xi))− T̃ (rk(Xi))|2
]

+ 3E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|2
]

+ 3E

[∑̀
i=1

Wn,i(X)|T̃ (rk(X))− T (rk(X))|2
]

:= 3An1 + 3An2 + 3An3.

Computation of An3. Thanks to the approximation of T by T̃ ,

An3 = E

[∑̀
i=1

Wn,i(X)|T (rk(X))− T̃ (rk(X))|2
]

≤ E
∣∣∣T (rk(X))− T̃ (rk(X))

∣∣∣2 < η.
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Computation of An1. Denote by µ the distribution of X. Then,

An1 = E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T (rk(Xi))|2
]

= `E

[
1⋂M

m=1{|rk,m(X)−rk,m(X1)|≤ε`}∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(Xj)|≤ε`}
|T̃ (rk(X1))− T (rk(X1))|2

]
.

= `E

{∫
Rd

|T̃ (rk(u))− T (rk(u))|2

×E

[∫
Rd

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
µ(dx)

∣∣∣∣∣Dk
]

µ(du)

}
.

Let us prove that

A′n1 = E

[∫
Rd

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
µ(dx)∣∣∣∣∣Dk

]

≤ 2M

`
.

To this aim, observe that

A′n1 = E

∫
Rd

1{x∈⋂M
m=1 r

−1
k,m([rk,m(u)−ε`,rk,m(u)+ε`])}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)

∣∣∣∣∣Dk


= E

∫
Rd

1{x∈⋃
(a1,...,aM )∈{1,2}M r−1

k,1(I
a1
n,1(u))∩···∩r−1

k,M (I
aM
n,M (u))}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)

∣∣∣∣∣Dk


≤
2M∑
p=1

E

∫
Rd

1{x∈Rp
n(u)}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

µ(dx)

∣∣∣∣∣Dk
 .

Here, I1
n,m(u) = [rk,m(u)− ε`, rk,m(u)], I2

n,m(u) = [rk,m(u), rk,m(u) + ε`], and
Rp
n(u) is the p-th set of the form r−1

k,1(Ia1n,1(u)) ∩ · · · ∩ r−1
k,M(IaMn,M(u)) assuming

that they have been ordered using the lexicographic order of (a1, . . . , aM).

Next, note that

x ∈ Rp
n(u)⇒ Rp

n(u) ⊂
M⋂
m=1

r−1
k,m([rk,m(x)− ε`, rk,m(x) + ε`]).
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To see this, just observe that, for all m = 1, . . . ,M , if rk,m(z) ∈ [rk,m(u) −
ε`, rk,m(u)], i.e., rk,m(u) − ε` ≤ rk,m(z) ≤ rk,m(u), then, as rk,m(u) − ε` ≤
rk,m(x) ≤ rk,m(u), one has rk,m(x) − ε` ≤ rk,m(z) ≤ rk,m(x) + ε`. Similarly,
if rk,m(u) ≤ rk,m(z) ≤ rk,m(u) + ε`, then rk,m(u) ≤ rk,m(x) ≤ rk,m(u) + ε`
implies rk,m(x)− ε` ≤ rk,m(z) ≤ rk,m(x) + ε`. Consequently,

A′n1 ≤
2M∑
p=1

E

[∫
Rd

1{x∈Rp
n(u)}

1 +
∑`

j=2 1{Xj∈Rp
n(u)}

µ(dx)

∣∣∣∣∣Dk
]

=
2M∑
p=1

E

[
µ{Rp

n(u)}
1 +

∑`
j=2 1{Xj∈Rp

n(u)}

∣∣∣∣∣Dk
]

≤
2M∑
p=1

E

[
µ{Rp

n(u)}
`µ{Rp

n(u)}

∣∣∣∣∣Dk
]

≤ 2M

`

(by the first statement of Lemma 4.1). Thus, returning to An1, we obtain

An1 ≤ 2ME
∣∣∣T̃ (rk(X)− T (rk(X)))

∣∣∣2 < 2Mη.

Computation of An2. For any δ > 0, write

An2 = E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|2
]

= E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|21⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

]

+ E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|21⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤δ}

]

≤ 4 sup
u∈Rd

|T̃ (rk(u))|2E

[∑̀
i=1

Wn,i(X)1⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

]
(4.4)

+

(
sup

u,v∈Rd,
⋂M

m=1{|rk,m(u)−rk,m(v)|≤δ}
|T̃ (rk(v))− T̃ (rk(u))|

)2

. (4.5)

With respect to the term (4.4), if δ > ε`, then∑̀
i=1

Wn,i(X)1⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

=
∑̀
i=1

1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}1

⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}∑`

j=1 1⋂M
m=1{|rk,m(X)−rk,m(Xj)|≤ε`}

= 0.
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It follows that, for all δ > 0, this term converges to 0 as ` tends to infinity. On
the other hand, letting δ → 0, we see that the term (4.5) tends to 0 as well, by
uniform continuity of T̃ . Hence, An2 tends to 0 as ` tends to infinity. Letting
finally η go to 0, we conclude that An vanishes as ` tends to infinity.
Proposition 4.2. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

= 0.

Proof of Proposition 4.2.

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

=
∑̀
i=1

∑̀
j=1

E[Wn,i(X)Wn,j(X)(Yi − T (rk(Xi)))(Yj − T (rk(Xj)))]

= E

[∑̀
i=1

W 2
n,i(X)|Yi − T (rk(Xi))|2

]

= E

[∑̀
i=1

W 2
n,i(X)σ2(rk(Xi))

]
,

where
σ2(rk(x)) = E[|Y − T (rk(X))|2|rk(x)].

For any η > 0, using again Györfi et al. (2002, Theorem A.1), σ2 can be
approximated in an L1 sense by a continuous function with compact support
σ̃2, i.e.,

E|σ̃2(rk(X))− σ2(rk(X))| < η.

Thus

E

[∑̀
i=1

W 2
n,i(X)σ2(rk(Xi))

]

≤ E

[∑̀
i=1

W 2
n,i(X)σ̃2(rk(Xi))

]

+ E

[∑̀
i=1

W 2
n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]

≤ sup
u∈Rd

|σ̃2(rk(u))|E

[∑̀
i=1

W 2
n,i(X)

]

+ E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
.
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With the same argument as for An1, we obtain

E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
≤ 2Mη.

Therefore, it remains to prove that E
[∑`

i=1W
2
n,i(X)

]
→ 0 as `→∞. To this

aim, fix δ > 0, and note that∑̀
i=1

W 2
n,i(X) =

∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}(∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(Xj)|≤ε`}

)2

≤ min

{
δ,

1∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}

}

≤ δ +

1{∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}
>0

}
∑`

i=1 1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}

.

To complete the proof, we have to establish that the expectation of the right-
hand term tends to 0. Denoting by I a bounded interval on the real line, we
have

E


1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}
∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}



≤ E


1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}1{X∈⋂M
m=1 r

−1
k,m(I)}∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}


+ µ
( M⋃
m=1

r−1
k,m(Ic)

)

= E

E

1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}1{X∈⋂M
m=1 r

−1
k,m(I)}∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}∣∣∣Dk,X]]+ µ

( M⋃
m=1

r−1
k,m(Ic)

)
≤ 2

(`+ 1)
E

[
1{X∈⋂M

m=1 r
−1
k,m(I)}

µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

+ µ
( M⋃
m=1

r−1
k,m(Ic)

)
.
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The last inequality arises from the second statement of Lemma 4.1. By an
appropriate choice of I, according to the technical statement (2.2), the second
term on the right-hand side can be made as small as desired. Regarding the
first term, there exists a finite number N` of points z1, . . . , zN`

such that

M⋂
m=1

r−1
k,m(I) ⊂

⋃
(j1,...,jM )∈{1,...,N`}M

r−1
k,1(In,1(zj1)) ∩ · · · ∩ r−1

k,M(In,M(zjM )),

where In,m(zj) = [zj − ε`/2, zj + ε`/2]. Suppose, without loss of generality,
that the sets

r−1
k,1(In,1(zj1)) ∩ · · · ∩ r−1

k,M(In,M(zjM ))

are ordered, and denote by Rp
n the p-th among the NM

` = (d|I|/ε`e)M sets.
Here |I| denotes the length of the interval I and dxe denotes the smallest
integer greater than x. For all p,

x ∈ Rp
n ⇒ Rp

n ⊂
M⋂
m=1

r−1
k,m([rk,m(x)− ε`, rk,m(x) + ε`]).

Indeed, if v ∈ Rp
n, then, for all m = 1, . . . ,M , there exists j ∈ {1, . . . , N`}

such that rk,m(v) ∈ [zj − ε`/2, zj + ε`/2], that is zj − ε`/2 ≤ rk,m(v) ≤
zj + ε`/2. Since we also have zj − ε`/2 ≤ rk,m(X) ≤ zj + ε`/2, we obtain
rk,m(X)− ε` ≤ rk,m(v) ≤ rk,m(X) + ε`. In conclusion,

E

[
1{X∈⋂M

m=1 r
−1
k,m(I)}

µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

≤
NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

≤
NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(Rp

n)

]
= NM

`

=

⌈
|I|
ε`

⌉M
.

The result follows from the assumption lim`→∞ `ε
M
` =∞.

Proposition 4.3. Under the assumptions of Proposition 2.2,

lim
`→∞

E

∣∣∣∣∣
(∑̀

i=1

Wn,i(X)− 1

)
T (rk(X))

∣∣∣∣∣
2

= 0.
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Proof of Proposition 4.3. Since |
∑`

i=1Wn,i(X)− 1| ≤ 1, one has∣∣∣∣∣
(∑̀

i=1

Wn,i(X)− 1

)
T (rk(X))

∣∣∣∣∣
2

≤ T 2(rk(X)).

Consequently, by Lebesgue’s dominated convergence theorem, to prove the
proposition, it suffices to show that Wn,i(X) tends to 1 almost surely. Now,

P

(∑̀
i=1

Wn,i(X) 6= 1

)

= P

(∑̀
i=1

1⋂M
m=1{|rk,m(X)−rk,m(Xi))|≤ε`} = 0

)

= P

(∑̀
i=1

1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])} = 0

)
=

∫
Rd

P
(
∀i = 1, . . . , `,1{Xi∈

⋂M
m=1 r

−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])} = 0

)
µ(dx)

=

∫
Rd

[
1− µ(∩Mm=1r

−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

]`
µ(dx).

Denote by I a bounded interval. Then,

P

(∑̀
i=1

Wn,i(X) 6= 1

)
≤
∫
Rd

exp
(
−`µ(∩Mm=1r

−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

)
× 1{x∈⋂M

m=1 r
−1
k,m(I)}µ(dx) + µ

( M⋃
m=1

r−1
k,m(Ic)

)
≤ max

u
ue−u

∫
Rd

1{x∈⋂M
m=1 r

−1
k,m(I)}

`µ(∩Mm=1r
−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

µ(dx)

+ µ
( M⋃
m=1

r−1
k,m(Ic)

)
.

Using the same arguments as in the proof of Proposition 4.2, the probability

P
(∑`

i=1 Wn,i(X) 6= 1
)
is bounded by e−1

`

⌈
|I|
ε`

⌉M
. This bound vanishes as n

tends to infinity since, by assumption, lim`→∞ `ε
M
` =∞.
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4.3 Proof of Theorem 2.1

Choose x ∈ Rd. An easy calculation yields that

E[|Tn(rk(x))− T (rk(x))|2|rk(X1), . . . , rk(X`),Dk]

= E
[∣∣Tn(rk(x))− E[Tn(rk(x))|rk(X1), . . . , rk(X`),Dk]

∣∣2|rk(X1), . . . , rk(X`),Dk
]

+
∣∣E[Tn(rk(x))|rk(X1), . . . , rk(X`),Dk]− T (rk(x))

∣∣2
:= E1 + E2. (4.6)

On the one hand, we have

E1 = E
[∣∣Tn(rk(x))− E[Tn(rk(x))|rk(X1), . . . , rk(X`),Dk]

∣∣2|rk(X1), . . . , rk(X`),Dk
]

= E

∣∣∣∣∣∑̀
i=1

Wn,i(x)(Yi − E[Yi|rk(Xi)])

∣∣∣∣∣
2

|rk(X1), . . . , rk(X`),Dk

 .
Developing the square and noticing that E

[
Yj|Yi, rk(X1), . . . , rk(X`),Dk

]
=

E[Yj|rk(Xj)], since Yj is independent of Yi and of the Xj’s with j 6= i, we
have

E1 = E

[∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}|Yi − E[Yi|rk(Xi)]|2∣∣∣∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}

∣∣∣2 (4.7)

∣∣∣∣∣rk(X1), . . . , rk(X`),Dk

]

=
∑̀
i=1

V(Yi|rk(Xi))
1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∣∣∣∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}

∣∣∣2 .
Thus,

E1 ≤ 4R2

1{∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}
>0

}
∑`

i=1 1
⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}
, (4.8)

where V(Z) denotes the variance of a random variable Z. On the other hand,
and recalling the notation Σ introduced in Section 3, we obtain for the second
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term E2:

E2 =
∣∣E[Tn(rk(x))|rk(X1), . . . , rk(X`),Dk]− T (rk(x))

∣∣2
=

∣∣∣∣∣∑̀
i=1

Wn,i(x)E[Yi|rk(Xi)]− T (rk(x))

∣∣∣∣∣
2

1{Σ>0} + T 2(rk(x))1{Σ=0}

≤
∑`

i=1 1⋂M
m=1{|rk,m(x)−rk,m(Xi)|≤ε`} |E[Yi|rk(Xi)]− T (rk(x))|2∑`

j=1 1⋂M
m=1{|rk,m(x)−rk,m(Xj)|≤ε`}

1{Σ>0} (4.9)

+ T 2(rk(x))1{Σ=0}

(by Jensen’s inequality)

=

∑`
i=1 1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`} |T (rk(Xi))− T (rk(x))|2∑`
j=1 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
1{Σ>0} (4.10)

+ T 2(rk(x))1{Σ=0}

≤ L2ε2
` + T 2(rk(x))1{Σ=0}. (4.11)

Now,

E|Tn(rk(X))− T (rk(X))|2 ≤
∫
Rd

E|(Tn(rk(x))− T (rk(x))|2µ(dx).

Then, using the decomposition (4.6) and the upper bounds (4.8) and (4.11),

E|Tn(rk(X))− T (rk(X))|2

≤
∫
Rd

E
[

4R21{Σ>0}

B

]
µ(dx) + L2ε2

` +

∫
Rd

E
[
T 2(rk(x))1{Σ=0}

]
µ(dx)

≤
∫
Rd

E
{
E
[

4R21{Σ>0}

B

∣∣∣Dk]}µ(dx) + L2ε2
`

+

∫
Rd

E
{
E
[
T 2(rk(x))1{Σ=0}|Dk

]}
µ(dx).

Thus, thanks to Lemma 4.1,

E|Tn(rk(X))− T (rk(X))|2

≤ 8R2

(`+ 1)

∫
Rd

1

µ(
⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx) + L2ε2
`

+

∫
Rd

T 2(rk(x))

(
1− µ(

M⋂
m=1

{|rk,m(x)− rk,m(X)| ≤ ε`})

)`

µ(dx).
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Consequently,

E|Tn(rk(X))− T (rk(X))|2

≤ 8R2

(`+ 1)

∫
Rd

1

µ(
⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx) + L2ε2
`

+

∫
Rd

T 2(rk(x)) exp

(
−`µ(

M⋂
m=1

{|rk,m(x)− rk,m(X)| ≤ ε`})

)
µ(dx)

≤ 8R2

(`+ 1)

∫
Rd

1

µ(
⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx) + L2ε2
`

+

(
sup
x∈Rd

T 2(rk(x)) max
u∈R+

ue−u

×
∫
Rd

1

`µ(
⋂M
m=1{|rk,m(x)− rk,m(X)| ≤ ε`})

µ(dx)

)
.

Introducing a bounded interval I as in the proof of Proposition 2.2, we observe
that the boundedness of the rk yields that

µ

(
M⋃
m=1

r−1
k,m(Ic)

)
= 0,

as soon as I is sufficiently large, independently of k. Then, proceeding as in
the proof of Proposition 2.2, we obtain

E|Tn(rk(X))− T (rk(X))|2

≤ 8R2

⌈
|I|
ε`

⌉M
1

`+ 1
+ L2ε2

` +R2 max
u∈R+

ue−u
⌈
|I|
ε`

⌉M
1

`

≤ C1
R2

`εM`
+ L2ε2

` ,

for some positive constant C1, independent of k. Hence, for the choice ε` ∝
`−

1
M+2 , we obtain

E|Tn(rk(X))− T (rk(X))|2 ≤ C`−
2

M+2 ,

for some positive constant C depending on L, R and independent of k, as
desired.
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