
IN NEUROPSYCHIATRIC IMAGING AND STIMULATION

   

 
Using multivariate machine learning methods and structural MRI to classify
childhood onset schizophrenia and healthy controls

  Deanna Greenstein, Brian Weisinger, James D. Malley, Liv Clasen and Nitin Gogtay

Standard Text: This Provisional PDF corresponds to the article as it appeared
upon acceptance, after rigorous peer-review. Fully formatted PDF
and full text (HTML) versions will be made available soon.

Journal Name: Frontiers in Psychiatry

ISSN: 1664-0640

Article type: Original Research Article

Received on: 27 Feb 2012

Frontiers website link: www.frontiersin.org

file:///C:/inetpub/wwwroot/FrontiersWebSite/FrontiersTemp/ProvisionalPDF///www.frontiersin.org
file:///C:/inetpub/wwwroot/FrontiersWebSite/FrontiersTemp/ProvisionalPDF///www.frontiersin.org


    Classifying schizophrenia with MRI 

  1 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 

 15 
Using multivariate machine learning methods and structural 16 
MRI to classify childhood onset schizophrenia and healthy 17 

controls 18 
 19 
 20 
Deanna Greenstein*1, James D. Malley2, Brian Weisinger1, Liv Clasen1, Nitin Gogtay1 21 
 22 
 23 
 24 
1 Child Psychiatry Branch, NIH/NIMH Bethesda, MD 25 
2 CIT/NIH, Bethesda, MD 26 
 27 
 28 
Correspondence: 29 
 30 
Deanna Greenstein 31 
10 Center Drive  32 
Room 3N202 33 
Bethesda, Maryland 20892 34 
Phone: (301) 435-5553 35 
Email: greenstd@mail.nih.gov 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 



    Classifying schizophrenia with MRI 

  2 

Abstract 46 
 47 

Introduction: Multivariate machine learning methods can be used to classify 48 
groups of schizophrenia patients and controls using structural magnetic resonance 49 
imaging (MRI). However, machine learning methods to date have not been extended 50 
beyond classification and contemporaneously applied in a meaningful way to clinical 51 
measures.  We hypothesized that brain measures would classify groups, and that 52 
increased likelihood of being classified as a patient using regional brain measures would 53 
be positively related to illness severity, developmental delays and genetic risk. Methods: 54 
Using 74 anatomic brain MRI sub regions and Random Forest, a machine learning 55 
method, we classified 98 childhood onset schizophrenia (COS) patients and 99 age, sex, 56 
and ethnicity-matched healthy controls.  We also used Random Forest to estimate the 57 
probability of being classified as a schizophrenia patient based on MRI measures. We 58 
then explored relationships between brain-based probability of illness and symptoms, 59 
premorbid development, and presence of copy number variation associated with 60 
schizophrenia. Results: Brain regions jointly classified COS and control groups with 61 
73.7% accuracy. Greater brain-based probability of illness was associated with worse 62 
functioning (p= 0.0004) and fewer developmental delays (p=0.02).  Presence of copy 63 
number variation (CNV) was associated with lower probability of being classified as 64 
schizophrenia (p=0.001). The regions that were most important in classifying groups 65 
included left temporal lobes, bilateral dorsolateral prefrontal regions, and left medial 66 
parietal lobes.  Conclusions: Schizophrenia and control groups can be well classified 67 
using Random Forest and anatomic brain measures, and brain-based probability of illness 68 
has a positive relationship with illness severity and a negative relationship with 69 
developmental delays/problems and CNV-based risk. 70 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 93 
Introduction 94 

 95 
Structural brain magnetic resonance imaging (MRI) studies of schizophrenia 96 

indicate widespread neuroanatomic abnormalities in cortical thickness, hippocampus, 97 
subcortical structures, and total brain measures (Byne, et al. 2009; Greenstein, et al. 2006; 98 
Mattai, et al. 2011; Narr, et al. 2005; Nesvag, et al. 2008; Shenton, et al. 2001; Steen, et 99 
al. 2006; van Haren, et al. 2011). Functional MRI and diffusion tensor imaging studies of 100 
schizophrenia also support brain dysfunction in schizophrenia involving multiple brain 101 
systems, emphasizing networks and connectivity dysfunction rather than brain regions 102 
acting in isolation (Bassett, et al. 2008; Lynall, et al. 2010; Meyer-Lindenberg, et al. 103 
2005; Repovs, et al. 2011). 104 

 105 
If schizophrenia is indeed a disorder of connectivity, then the capacity for 106 

identifying reliable neuroanatomic signatures of the disease may be reduced if regions are 107 
not considered jointly. However, traditional statistical methods (e.g., correlation, t-tests, 108 
ANOVA, logistic regression) explore group differences effectively but only within a 109 
region or voxel at a time (Sun, et al. 2009).  Also, traditional model-based methods are 110 
limited when exploring how regions/voxels interact as these models quickly become 111 
overburdened when trying to combine predictors and all of their interactions from high 112 
dimensional MRI data sets (e.g., 6 predictors have over 60 effects when including all 113 
main effects and interactions). These statistical methods may also miss a signal from 114 
brain measures interacting in nonlinear, non-multiplicative ways.   115 

 116 
In contrast, multivariate machine learning methods can utilize available 117 

information simultaneously to understand how variables jointly distinguish between 118 
groups. These methods have had previous success classifying schizophrenia and healthy 119 
controls using structural brain MRI data with classification accuracies ranging from 81% 120 
to 93% (Davatzikos, et al. 2005; Kawasaki, et al. 2007; Koutsouleris, et al. 2009; Sun, et 121 
al. 2009; Yoon, et al. 2007). However, no structural MRI study using multivariate 122 
machine learning methods has attempted to link multivariate brain-based classifier results 123 
with clinical measures in samples of patients with schizophrenia. This is important in that 124 
behavioral correlates can provide a clinical context for classifier results.  125 

 126 
Here we use Random Forest (Breiman 2001) to contemporaneously classify 127 

groups using anatomic brain measures and correlate clinical and genetic information with 128 
classification scheme results.  We selected Random Forest as it has error rates 129 
comparable to other approaches (Malley, et al. 2011b) while being able to determine the 130 
probability of illness based on the feature set of brain regions (Malley, et al. 2011a), 131 
(henceforth referred to as brain-based probability of illness). Of note, these probabilities 132 
can be used as a continuous measure containing more information than dichotomous 133 
classification to explore relationships with clinical correlates and risk factors for 134 
childhood onset schizophrenia (COS).  Accordingly, we hypothesized that brain-based 135 
probability of illness would be positively associated with clinical measures of illness 136 
severity.  To explore the idea that brain-based probability of illness would covary with 137 
other risks, we hypothesized positive associations between brain-based probability of 138 
illness and presence of copy number variations (CNVs) associated with the risk of 139 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schizophrenia. Additionally, we hypothesized that measures of developmental delays 140 
which are considered risk factors under the neurodevelopmental model for schizophrenia 141 
(Rapoport, et al. 2005; Weinberger 1987) would also be positively associated with brain-142 
based probability of illness.  143 

 144 
Methods 145 

Participants  146 
All probands were subjects in an ongoing study of COS at the National Institute 147 

of Mental Health and met DSM IIIR/IV criteria for schizophrenia with the onset of 148 
psychosis before their 13th birthday. Exclusion criteria were a history of significant 149 
medical problems, substance abuse, or a premorbid IQ below 70. We obtained informed 150 
consent from parents of minors and participants over 18, and informed assent was 151 
obtained when possible. Further details of patient selection are described elsewhere 152 
(Kumra, et al. 1996; McKenna, et al. 1994).    153 

 154 
We obtained MRI scans during each proband’s initial inpatient stay and at 155 

subsequent two-year follow-up visits. For the purposes of this study, each patient’s first 156 
good quality MRI scan  (e.g., absence of visible motion artifacts) was selected to 157 
minimize length of illness and medication history for a total of 98 scans.  The study was 158 
approved by the National Institutes of Health (NIH) institutional review board. Typically 159 
developing control participants were volunteers in a prospective study of normal brain 160 
development (see (Giedd 1999) for further details) also approved by the NIH institutional 161 
review board. The current control sample of unrelated 99 participants was selected to 162 
match the COS group on age, sex and ethnicity.  Scans with moderate or severe motion 163 
artifacts and scans from participants with dental braces were excluded.  See Table 1 164 
below for demographic information. 165 
 166 
Clinical measures 167 

We used age-appropriate versions of the Global Assessment of Functioning Scale 168 
(GAS) (APA 1994; Shaffer, et al. 1983), the Scale for the Assessment of Positive 169 
Symptoms (SAPS) (Andreasen 1984), and the Scale for the Assessment of Negative 170 
Symptoms (SANS) (Andreasen 1983 ) to assess clinical symptoms in COS probands 171 
(intraclass correlation coefficients for all measures > 0.80). We restricted ratings to NIH 172 
inpatient medication-free assessments to approximate comparable rater, treatment and 173 
environmental effects across participants.  174 

 175 
To assess developmental delays and problems, we used the 40-item Autism 176 

Screening questionnaire (ASQ) (Berument, et al. 1999). We also conducted a chart 177 
review of previous medical records for pre-illness and pre-prodrome academic, language, 178 
motor, and social developmental problems and delays. The chart review consists of 15 179 
items (academic (2 items); social (3 items); language (6 items) motor (4 items)) scored 1 180 
or 0 depending on presence or absence of delay/problem and is included in Appendix A. 181 
Reliability among 3 chart reviewers was adequate (intraclass correlation coefficients > 182 
0.70). 183 

 184 
 185 

 186 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Table 1: Sample demographics and clinical measures 187 

 COS (n-98) 
mean(SD) or count 

Controls (n=99) 
mean(SD) or count Statistic P value 

         
Age at scan 14.46(3.40) 14.45(4.43) t(df=195)=0.02 0.99 
Vocabulary 6.37(3.49) 11.97(2.73) t(df=180)=12.13 <0.001 
Intracranial Volume 1474032(166557) 1476771(160495) t(df=195)=0.12 0.91 
Female|Male 43|55 41|58 X2(df=1)=0.12 0.73 
Race        
        Asian 5 4 
        African American 29 23 
        Hispanic 8 8 
        Other 7 7 
        White 49 57 

X2(df=4)=1.4 0.84 

Inpatient Medication Free Rating Scales   
Scale for the Assessment of Positive 
Symptoms 48.44(22.03) 
Scale for the Assessment of Negative 
Symptoms 61.23(28.39) 
Global Assessment of Functioning 24.57(13.22) 
Autism Screening Questionnaire 14.36(9.63) 
Developmental Chart Review (range=0-
15) 3.88(2.9) 

Years ill at time of Scan 4.5 (2.96) 

- - - 

 188 
 189 
Copy Number Variation 190 

All subjects in our COS study were genotyped using Illumina 1M SNP chip 191 
(www.illumina.com), and CNV detection was performed by using three algorithms: (1) 192 
PennCNV Revision 220, (2) QuantiSNP v1.1, and (3) GNOSIS. Analysis and merging of 193 
CNV predictions was performed with CNVision (www.CNVision.org). Twelve subjects 194 
in the current sample have at least one CNV that has been independently associated with 195 
risk of schizophrenia (1q21 (n=1), 2p16 (NRXN1) (n=1), 2p25(MYT1L) (n=2), 196 
3p25(SRGAP) (n=2), 7q11 (n=1), 7q35 (CNTNAP2) (n=1), 15q11 (n=1), 16p13 (n=2), 197 
22q11 (n=4)), (Bassett, et al. 2010; Ingason, et al. 2011; International Schizophrneia 198 
Consortium 2008; Irmansyah, et al. 2008; Kirov, et al. 2009; Levinson, et al. 2011; Li, et 199 
al. 2011; Moreno-De-Luca, et al. 2010; Stefansson, et al. 2008; Stone, et al. 2008). These 200 
data were not collected for controls. 201 

 202 
MRI acquisition and analysis 203 

We obtained brain MRIs using a GE Signa 1.5T MR system (General Electric 204 
Medical Systems, Milwaukee, Wisconsin).  T1-weighted structural brain images were 205 
collected using a 3D spoiled gradient recall (SPGR) sequence.  Brain volumes consisted 206 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of 124 1.5 millimeter axial slices with a .9375 millimeter in-plane resolution.  Scanning 207 
parameters were TR= 24 milleseconds, TE=5 milleseconds, and a flip angle of 45 208 
degrees.   209 

The brains were processed using the FreeSurfer recon-all pipeline with default 210 
settings except for the number of non-uniformity correction iterations that were increased 211 
to six.  We also used the default parcellation which uses the Desikan atlas 212 
(https://surfer.nmr.mgh.harvard.edu/ftp/articles/desikan06-parcellation.pdf ). Cortical and 213 
subcortical volumes were measured automatically with FreeSurfer (version 5.1) 214 
http://surfer.nmr.mgh.harvard.edu).  This method has been described in detail elsewhere 215 
(Fischl, et al. 2002; Fischl, et al. 2004) and will only be briefly described here. Processing 216 
included motion correction and removal of non brain tissue using a hybrid 217 
watershed/surface deformation procedure (Segonne, et al. 2004), automated Talairach 218 
transformation, segmentation of the subcortical white matter and deep gray matter 219 
volumetric structures (including the hippocampus and ventricles) (Fischl, et al. 2002; 220 
Fischl, et al. 2004), intensity normalization, tessellation of the gray-white matter 221 
boundary, automated topology correction (Fischl, et al. 2001; Segonne, et al. 2007), and 222 
surface deformation following intensity gradients to optimally place the gray-white 223 
matter and gray matter/CSF borders at the location where the greatest shift in intensity 224 
defines the transition to the other tissue class.  Anatomic segmentation is based on the 225 
probability of the local spatial configuration of labels given the tissue class. This 226 
technique has previously been shown to be comparable in accuracy to manual labeling 227 
(Fischl, et al. 2002) and has been demonstrated to show good test-retest reliability across 228 
scanner manufacturers and field strengths (Han, et al. 2006).  229 

 230 
The above procedure generated average cortical thickness for 68 frontal, 231 

temporal, parietal and occipital lobe regions, and bilateral lateral ventricle, thalamus and 232 
hippocampus volumes to yield the 74 variables we used as features in the machine 233 
learning analysis (below). Before the variables were used to classify, they were each 234 
residualized using a general linear model with sex, age, age-squared, and intracranial 235 
volume as independent variables.  236 
 237 
Statistical Analysis 238 
1. Classification: Random Forest 239 

We used Random Forest (RF) (Breiman 2001) 240 
(http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm) as our 241 
multivariate machine learning method to predict group membership (COS or controls) 242 
with the 74 residualized brain measures (above) as features. RF’s basic unit is a 243 
classification tree.  RF works by selecting a random bootstrap subset of approximately 244 
66% of the sample per tree and randomly selecting a subset of all features (or cortical 245 
regions) at each node of the tree.  At each node, RF selects the variable that best splits 246 
data into two daughter nodes.  This process allows for the cortical regions to work in 247 
concert while predicting the outcome region.  RF determines prediction error using the 248 
out of bag sample  (i.e., roughly 33% of participants not randomly selected to build a 249 
given tree) that is sent down a tree after it is grown.  It is through this process of selecting 250 
bootstrap samples to build the tree and then using the out of bag sample to determine 251 
error and variable importance that RF minimizes overfitting and contains an internal 252 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validation step. This internal validation component built into RF is similar to leave-one-253 
out schemes and other cross-validation procedures.  254 

 255 
RF provides three basic outputs: classification error, importance scores, and 256 

proximities. Classification error is the percent of times a participant (when out of bag) is 257 
incorrectly classified; subtracted from one, it is the percent of times a participant (when 258 
out of bag) is correctly classified. An importance score is the difference between out of 259 
bag error when a variable is randomly permuted and when the variable is not randomly 260 
permuted.  So, if a variable’s values are randomly permuted and the error rates do not go 261 
up, it is not a useful predictor, since it is no better than random noise.  Importance scores 262 
can be transformed to z scores ((score-mean)/standard deviation) to ease interpretability. 263 
A proximity score is a measure of the frequency at which two out of bag participants are 264 
classified in the same terminal node. These proximities are used to form an n*n matrix 265 
where n is the number of subjects. This matrix can then be transformed into a distance 266 
matrix that can be visualized with multidimensional scaling.  267 

 268 
Because the random components in RF (out-of-bag sampling, node-level 269 

permutation testing) can make the importance scores, proximity scores and error rates 270 
vary, we ran each of the above steps 1000 times and took the average values. We used the 271 
R package randomForest (Liaw and Wiener 2002) for all analyses and set the number of 272 
trees per forest at 300 as the plotted error rate was observed to stabilize before 300 trees. 273 
We set our terminal node size to 10 and number of variables randomly selected per node 274 
(aka mtry) to 10.   275 

 276 
Finally, we utilized recent work (Malley, et al. 2011a) which transforms RF into a 277 

probability machine and allows RF to determine the probability of belonging to the COS 278 
group based solely on the 74 residualized brain measures. Briefly, we accomplish this by 279 
running RF in regression mode where we assign a value of 1 to COS participants and a 280 
value of 0 to controls.  Exactly as in coin-tossing problems, the estimated average of 281 
these scores for each subject is the estimated probability for that subject. These 282 
probability estimates are known to be consistent, as opposed to the standard RF 283 
probability estimates (e.g., those available in the standard output of the 284 
RandomForest package) which have no known optimality (Biau in press; Malley, et 285 
al. 2011a). We ran this analysis 1000 times and took the average probability of being 286 
classified as COS per participant to correlate with clinical measures. 287 
 288 
2. Classification: Logistic Regression 289 

We computed 74 logistic regressions to determine univariate classification 290 
accuracy for each region. For each regression, we used regional cortical thickness as the 291 
independent measure (after residualizing regional thickness using age, age squared, sex 292 
and intracranial volume) and diagnostic group as the dependent measure. Statistical 293 
significance for logistic regression coefficients was determined after false discovery rate 294 
correction (Genovese, et al. 2002) (q=0.05).  295 
 296 
3. Relationships between brain-based probability of illness, clinical correlates and   297 
schizophrenia risk factors 298 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We used linear regression to assess the relationship between brain-based 299 
probability of illness and medication free clinical measures (GAS, SAPS total, SANS 300 
total) and developmental measures. We used a t-test to assess the group difference in 301 
mean probability of illness between COS participants who have a CNV independently 302 
associated with risk of schizophrenia and those who do not.  For these analyses, we 303 
checked assumptions of linearity, normality, and homoscedasticity, and visually explored 304 
data for outliers and unrealistic data points. 305 
 306 

Results 307 
 308 

1. Machine Learning Multivariate Classifier 309 
Classification accuracy.   310 

The average classification error of the 1000 RF runs was 26.3% (SD=1%), 311 
yielding an average classification accuracy of 73.7%.  When we randomly permuted 312 
group membership 1000 times and ran RF for each permutation, the null distribution and 313 
the non-permuted distribution did not overlap, indicating that the 73.7% classification 314 
accuracy is far better than chance (see Figure 1).  315 
 316 

[Insert Figure 1 about here] 317 
 318 
Importance measures.  319 

The entire list of 74 importance z scores is reported in supplementary table 1. The 320 
15 regions with an importance scores at least 0.5 SD above the mean are visually 321 
represented in Figure 2. As seen in Figure 2, bilateral frontal, left precuneus, and left 322 
temporal regions had the highest importance scores. 323 

 324 
[Insert Figure 2 about here] 325 

 326 
Multidimensional scaling of proximity matrix and probability machine results.   327 
 The multidimensional scaling (MDS) plot (Figure 3A) for the proximity matrix 328 
is a visual representation of the accuracy of the classifier; Geometric distances between 329 
people correspond to how often they are classified in the same group (closer points 330 
correspond to being classified in the same group frequently). The groups appeared well 331 
separated, corresponding to 73.7% classification accuracy. In addition, we have provided 332 
a color overlay which represents each participant’s probability of being classified as COS 333 
based on RF run as a probability machine (Figure 3B).  334 

 335 
[Insert Figure 3 about here] 336 

 337 
2. Univariate logistic regressions 338 

74 univariate logistic regressions yielded 55 significant odds ratios (p< 0.03), all 339 
of which survived false discovery correction. Of these, only right caudal middle frontal 340 
thickness  (p< 0.001, classification accuracy=73.6%) was able to classify as well as RF, 341 
although five regions individually classified subjects with at least 70% accuracy (left 342 
caudal middle frontal, left rostral middle frontal, left parstriangularis, left precuneus). 343 
These regions were also among the 15 regions with the top RF importance scores, 344 
revealing overlap between univariate and multivariate classification.  345 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 346 
Figure 4 illustrates the curvilinear relationship between univariate results and RF 347 

important scores (also see supplemental table 1 for all regions, their importance scores 348 
and univariate classification accuracies).  349 

 350 
[Insert Figure 4 about here] 351 

 352 
Of note were the regions with relatively weaker univariate effects (e.g., not among the 353 
top 20 univariate classifiers) and importance scores greater than 0.50 SDs above the 354 
mean. Such predictors included right parsopercularis, left bank of the superior temporal 355 
sulcus, left fusiform gyrus (importance Z scores= 1.34, 0.56, 0.94, respectively; 356 
univariate accuracy rate=  65%, 65%, 64,5%, respectively).  357 

 358 
3. Clinical Correlates    359 
 360 

1. Inpatient Medication-Free Ratings. Greater brain-based probability of being 361 
classified as COS was significantly associated with worse overall functioning during 362 
inpatient medication free baseline (GAS score= 0.0004) (see Figure 5). Positive 363 
relationships between probability of being classified as COS and negative and positive 364 
symptoms during inpatient medication-free baseline (greater probability associated with 365 
more symptoms) were statistical trends (SAPS p=0.07, SANS=0.09, respectively).   366 

 367 
 2. Schizophrenia Risk Factors  368 

 369 
1. Developmental Measures.  Greater brain-based probability of being 370 

classified as COS was significantly associated with fewer documented pre-illness 371 
academic, language, motor and social difficulties and delays (p=0.02) (see Figure 5). 372 
There was no relationship between probability of being classified as COS and scores on 373 
the Autism Screening Questionnaire (p=0.22).  374 

 375 
[Insert Figure 5 about here] 376 

 377 
  2. Copy number variations. The 12 COS subjects who have a CNV that 378 
has been independently associated with risk of schizophrenia had a lower mean 379 
probability of illness (0.44(SD=0.23)) than patients who did not  (n=86, mean = 380 
0.64(SD=0.18) (t=3.398(df=96) p =0.001).   381 
 382 

Discussion 383 
 384 

Using a multivariate machine learning approach and measures of regional 385 
cortical thickness, bilateral hippocampus, thalamus and lateral ventricle volumes, 386 
we achieved good classification between COS patients and controls.  We were also 387 
able to use all brain measures jointly to predict group membership, which is 388 
consistent with a current emphasis on brain systems and networks rather than 389 
regions in isolation. The regions that were most important in our multivariate 390 
classifier included temporal, dorsolateral prefrontal regions and medial parietal 391 
lobe: this is consistent with current univariate results and previous reports of gray 392 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matter reductions and brain network abnormalities in these regions (Ellison‐Wright 393 
and Bullmore 2009; Meyer‐Lindenberg 2010; Shenton, et al. 2001; van den Heuvel, 394 
et al. 2010).  395 

 396 
To our knowledge, we provide initial evidence that multivariate machine learning 397 
approaches can link probability of illness with clinical measures in a meaningful 398 
way.   Specifically, here we link medication‐free illness severity ratings, CNVs and 399 
developmental risk factors with nuanced, continuous information generated by 400 
machine learning at an individual level: i.e., what is the probability a person is 401 
affected given the features, rather than dichotomous affected/not affected output.   402 
For example, 52% and 85% chance of an event or diagnosis both declare for the 403 
event but clearly, there is more information available in the continuous percentage.  404 
 405 

Consistent with our hypothesis we found a positive relationship between  406 
probability of illness base solely on brain measures and illness severity.  Counter to 407 
our hypothesis, however, fewer premorbid academic, language, motor, and social 408 
developmental problems and having a CNV associated with schizophrenia were 409 
associated with a lower brain-based probability of being classified as schizophrenic.  This 410 
suggests that there may be a relationship between schizophrenia patients who sustained a 411 
large genetic mutation on a pathway of unusual strength, reflected in more frequent early 412 
difficulties but with less neuroanatomic disturbance. However, caution is warranted when 413 
while interpreting the CNV group difference in probability of illness, as the group of 414 
CNVs is diverse and may not represent a single homogenous population.   415 

 416 
We hypothesized that linear and/or non-linear relationships among brain regions 417 

would make the multivariate classifier superior to univariate classifiers. However, the 418 
current multivariate approach did not out-perform several univariate logistic regressions 419 
on a pure classification task, and our hypothesis was thus not confirmed. Specifically, 420 
right caudal middle frontal thickness alone performed as well as the multivariate 421 
classifier, and several other frontal and temporal regions had classification accuracies 422 
greater than 70%.  At the same time, the strong curvilinear relationship between RF 423 
importance scores and univariate classification accuracy indicates that both approaches 424 
detect strong effects, and RF does so without incurring costs for correcting for multiple 425 
tests with unknown joint correlation structure or assumptions of normality and 426 
homoscedasticity.  Also, some univariate effects that are not particularly accurate 427 
classifiers have relatively strong importance scores. This outcome suggests that the 428 
combination of univariate and multivariate methods can be used detect regions of relative 429 
importance when interacting with other regions but that do not classify particularly well 430 
when acting alone (e.g., right parsopercularis, left bank of the superior temporal sulcus, 431 
left fusiform gyrus).  This is particularly important in an illness like schizophrenia, which 432 
is can be considered a disorder of dysconnectivity, as individual brain regions are 433 
unlikely to be affected in an isolated manner.  434 

 435 
Our multivariate classification error rate of 73.7%, although good, is not high 436 

enough to warrant the use of MRI measures as a stand-alone diagnostic tool. While 437 
previous multivariate classification studies report upwards of 80% accuracy (Davatzikos, 438 
et al. 2005; Kawasaki, et al. 2007; Koutsouleris, et al. 2009; Sun, et al. 2009; Yoon, et al. 439 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2007), clinical interview conducted by a skilled clinician still remains the most efficient, 440 
cost-effective diagnostic tool between healthy and psychotic patients.  However, 441 
structural brain-based classifiers do appear to be relevant when the goal is to understand 442 
the most important neuroanatomic factors distinguishing diagnostic groups without 443 
encumbrances inherent in multiple tests and parametric test assumptions.  Also, we 444 
recommend future studies using features from MEG, DTI and fMRI scans, as MEG, DTI, 445 
and fMRI data is collected specifically to detect active brain networks and connectivity. 446 
We believe this kind of study may be better suited than structural MRI to fully harness 447 
the power of multivariate methods’ ability to capitalize on linear and nonlinear 448 
interactions. Also, when brain imaging features can classify cases and controls, 449 
researches can use methods like the ones currently employed to detect 450 
relationships between phenotypes and continuous probabilities from machines with 451 
brain‐based (or fMRI, DTI, EEG, etc…) features.  These relationships might otherwise 452 
be missed if the machine output is restricted to dichotomous classification.  453 

  454 
Limitations of the current study include the lack of a validation sample, although 455 

COS is a very rare disorder and the current sample required several decades to acquire.  456 
Also, our assessment of developmental issues has two drawbacks: 1) retrospective chart 457 
reviews may miss relevant information that was never documented and 2) the ASQ 458 
assesses current functioning as well as premorbid development. Also, here we have 459 
chosen to use regional brain measures that provide less noise albeit lower resolution 460 
compared to the higher resolution voxel-wise measures.  Despite these limitations, 461 
Random Forest appears to provide a means of distinguishing groups that has the 462 
advantage of linking clinical information and risk factors and classification using 463 
multiple brain regions jointly. 464 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Appendix A: 15 item chart review for developmental issues with inclusion examples. 722 
Each item is scored 1 or 0. 723 
 724 
 725 

  Inclusion Examples 

 ACADEMIC   

1 Delay Skills >1 grade level behind; repeating a grade; learning disabilities 

2 Special Education Special needs school; resource room help 

 SOCIAL   

3 
Abnormal Peer 
Relations 

Difficulty making or keeping friends; difficulty with reciprocal 
interaction 

4 Withdrawal Keeps to self; loner 

5 Disinhibition Aggression (physical and verbal); impulsivity 

 SPEECH/LANGUAGE   

6 Rhythm 
Speech/language evaluation results < 1 standard deviation below the 
mean 

7 Articulation Difficulties pronouncing "R's" at age 7. 

8 Comprehension 
Speech/language evaluation results < 1 standard deviation below the 
mean 

9 Production 
Speech/language evaluation results < 1 standard deviation below the 
mean 

10 Mutism Total or selective 

11 Delay First words spoken after18 months 

 MOTOR   

12 Tics Vocal and motor tics 

13 Repetition Rocking; flapping 

14 Clumsiness Poor coordination; difficulties skipping 

15 Delay Not crawling by 10 months 
 726 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