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Introduction

Logistic regression has been the de facto, and often the only, model used in the description
and analysis of relationships between a binary outcome and observed features, both
categorical and continuous. It is widely used both as an association model and a predictive
model, to look at (a) the conditional probability of outcome, given predictors, and (b)
predictor effect size estimates using conditional odds ratios. It is also widely available in
software and is easy to optimize in low-dimensional problems. However, it does assume
the data generating model to be logistic, requires an explicit specification of the model, and
is not scalable to the higher dimensional problems which are so common today. Good
predictions and effect size estimation from a logistic model therefore require the
researcher to geuss at the true data generating model, and to exactly specify which
predictors appear and how they interact with each other. If the model is misspecified, both
predictions and effect size estimates may be more than slightly in error. In modeling terms,
the challenge is to get all the main effects and interactions (2-way and higher order)
correctly specified in the model; otherwise efficient and consistent estimation is not
certain.

We recently introduced the concept of a probability machine (PM) [1], which is simply
any consistent nonparametric regression machine applied to binary or categorical
outcomes. A PM produces a predicted conditional probability of success given predictors,
but in a model-agnostic data-driven fashion. The idea is that, starting from binary (0/1)
outcomes for each subject, a PM generates an estimated expected value for each subject,
which is just the conditional probability of success for that subject given predictors. Given
today’s rich data environment, a PM has several desirable properties. It can study any list of
predictors (binary, categorical, continuous), requires no explicit structural specification of
the model, no specification of interactions, and is scalable to very large sets of predictors,
for example over a million single nucleotide polymorphisms (SNPs) in genome-wide
association studies. As a practical matter, there are many well-studied families of
nonparametric learning machines that are provably consistent for the regression problem -
in the limit of large data the error rate converges to the Bayes error rate - and with
reasonably speedy convergence. The class of nonparametric regression machines we have
studied come from the machine learning literature, namely random forest regression|[2]
and nearest neighbor regression. Both of these have provable consistency properties under
fairly general conditions [3, 4, 5] . There are of course other possible choices, like some



support vector machines. In this work, we focus on random forest regression used with a
{0,1} outcome and call it a random forest probability machine (RFPM).

A RFPM, first and last a regression random forest, is scalable to large datasets and high-
dimensional problems and requires only a specification of which features are to be
included in the machine rather than any explicit functional form. We have shown in our
earlier work [1] that even when data is generated from a logistic model, the test set error
when estimating the outcome probability of success using a RFPM often beats that using
logistic regression. In this work we look at the role of logistic regression in particular and
how the PM can play a similar role both in probability prediction and effect size estimation
under prospective sampling schemes. We show that with data generated by a logistic
model, a PM can do just as well as a correctly-specified logistic regression for both
problems, and can be superior when the logistic regression is not correctly specified or
inappropriate given the data generating model. We also suggest that a PM can do more
than just probability and effect estimation as with logistic regression. It can also be used for
descriptive discovery of interactions, among other descriptive analyses. Moreover, as
probability machines are known to be consistent, the probability estimates and derived
risk estimates will also be consistent. This also holds for interaction detection across any
subsets of features. We expand on these themes in the following sections.

Conditional probability estimation

We first consider the problem of conditional probability estimation. Under prospective
sampling schemes, both logistic regression (LR) and PMs can estimate the conditional
probability of success given a set of features. The consistency of the LR model is established
as long as the data generating mechanism is logistic, and the correct model is specified [find
references]. Under model mis-specification, it is known that the LR model is no longer
consistent [refs]. As practitioners know, establishing the adequacy of a particular logistic
model for a data set is not easy, and no tests to check the validity of the logistic link are
routinely available. We believe that any logistic regression model fit to a data set is likely to
be incorrect in its specification, though in some cases we may be more confident based on
other knowledge about the data generating mechanism. The RFPM, on the other hand, is
known to be consistent under more general conditions [3, 5] and thus can produce valid
estimates of the conditional probability under a wider variety of conditions. We note here
that we will use a random forest of regression trees, where each component tree provides a
probability estimate of success (denoted in [1] as regRF). The random forest methodology
also can provide a self-declared “probability estimate” when used as a classifier, which is
nothing but the proportion of component trees which classified the result as a success. We
have found in [1] that this method, there denoted by classRF, is far less efficient at
probability estimation, and the consistency of the probability estimates thus produced has
not been demonstrated in the literature.

Simulations

We will first see how a RFPM compares to a LR when the generative model truly is logistic.
We generated multiple simulation studies using binary predictors. We considered 1, 2 or 3



binary predictors with main effects and/or interactions with respect to a binary outcome,
and add 7 other binary predictors with no association with the outcome. This is motivated
by genomic studies where the signal is typically sparse and several genes have no
association with the outcome. Details may be found in the supplementary materials. We
will fit three models:

1. A main effects logistic regression using all available features (LR1)

2. Alogistic regression with main effects and all possible two-way interactions using all
available features (LR2)

3.  Arandom forest regression using all available features (RFPM, denoted as RF in the
graphs)

LR1 is the usual model that is tried in most situations, since interactions are harder to
estimate and require more data for adequate power and efficiency. LR2 is a model that
accounts for 2-way interactions in an open-ended manner. That is, will, non-committal
manner. A priori, we do not know which interactions are actually present, and so we will
interrogate all possible such interactions. Note that this is not a fully saturated model, since
that would include all higher order interactions as well. For data with a large number of
available features, the LR2-type model quickly becomes unfeasible, since the number of
parameters grows at the rate p? when p is the number of available features. The RFPM is
only needs which features to include, and will consider complex interactions implicitly, as
we will see. It will also not break down as quickly as p increases, and is used routinely with
p as large as 100K or 1M or even larger; we have experience using it with over 100 million
features in a genomic data set.

From our simulations we highlight two cases; other results may be found in supplementary
material. Model 1 will consist of a binary outcome generated under a logistic model from 3
binary independent binary predictors with baseline success probability 0.3, conditional
odds ratios of 1.2, 1.5 and 2 respectively and 7 other independent binary predictors with
no association with the outcome, i.e.,

logit(p) = logit(0.3) + log(1.2) X; + log(1.5) X, + log(2) X3 + 0 X, + -+ 0 X;

Model 2 is the same as model 1, except that there are interactions between X; and Xz and
between X; and X3 with odds ratios of 2 and 5, respectively. The quality of the estimated
probabilities of success, conditional on the predictors, was evaluated using bias and
efficiency. Bias is measured by the difference between the true conditional probability used
to generate the data sets and the average individual prediction over the simulated data
sets. Efficiency in predicting the individual conditional probability is measured by the
width of the interval defined by the 5th and 95th percentiles of the simulated distribution
of predictions for each indivdual.

Figures 1a and 1b show the performance of the three fitted models under Model 1. We find
that all three models provide reasonably unbiased estimation of the true probabilities,



though naturally LR1 and LR2 are less biased since they are in the family of the data
generating model. We also find that LR1 is most efficient, and that LR2 is quite a bit less
efficient. This is because degrees of freedom are being expended in estimating the
interactions which, in this model, do not exist. The RFPM has efficiency intermediate to the
two, reflecting the fact that it implicitly finds a sparse model [5], but is still not as efficient
as a logistic model when the data is generated from a logistic model. This is not surprising
to us, since we’re being penalized for not assuming a particular correct structure for the
model.
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Fig 1a: Average conditional probability estimates from the 3 fitted models over 1000
simulations under Model 1, compared with the true generating probabilities and with each
other. The diagonal elements show the univariate distribution of the probability estimates.
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Fig 1b: Width of the interval defined by the 5t and 95 percentile of the simulation
distribution of each probability target over 1000 simulations under Model 1, under the
different fitted models, compared to each other. The diagonal elements show the univariate
distributions of this interval under each model
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Figures 2a and 2b show the performance of the models under Model 2. Since Model 2
contains interactions that are not specified in LR1, it does poorly in estimating the true
probabilities; it is quite substantially biased. LR2 does contain these interactions, so the
estimated probabilities are accurate. RFPM also provides accurate estimates of the
probabilities, but without any explicit specification of any interactions. Once again the
efficiency of RFPM is intermediate to LR1 and LR2, since we’re paying a penalty for
nonparametric estimation but not as much as estimating multiple unnecessary parameters;
RFPM still optimizes to a sparser model than LR2 implicitly. However, we would like to
note that, in practice, LR1 is the usual model that is fit to data and is reported on; modeling
for interactions is not routinely done specially as the number of predictors increase. Given
that LR1 is nominally the model most often used, Fig 2a shows that the presence of
interactions can severely bias its results. RFPM accomodates potential interactions without
a priori specification and hence maintains good predictive performance. As an initial model
for binary outcomes, RFPM provides a more robust solution with respect to model
specification than the logistic paradigm.
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Fig 2a: Average conditional probability estimates from the 3 fitted models over 1000
simulations under Model 2, compared with the true generating probabilities and with each
other. The diagonal elements show the univariate distribution of the probability estimates.
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Fig 2b: Width of the interval defined by the 5t and 95t percentile of the simulation
distribution of each probability target over 1000 simulations under Model 2, under the
different fitted models, compared to each other. The diagonal elements show the univariate
distributions of this interval under each model.

To further make the point about the sensitivity of logistic regression to model specification,
we simulated data from a logistic model where each of the 8 subgroups defined by X1, Xz
and X3 has an arbitrary conditional probability (call this Model 3). This is in effect a
saturated logistic model with a 3-way interaction term. We still keep the 7 unassociated
predictors as before. As we can see in Figure 3a, predictions from both LR1 and LR2 miss
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the true probabilities, LR1 to a greater degree than LR2, since the generating model is not a
sub model of either LR1 or LR2. The RFPM, on the other hand, more accurately estimates
most of the probabilities with no change in the model specification. Figure 3b shows that the
RFPM is now just as efficient as LR1, and more efficient than LR2. These combined shows
that RFPM is a better choice of initial model when the generative model, though logistic, is
not a submodel of the LR models being fitted.
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Fig 3a: Average conditional probability estimates from the 3 fitted models over 1000
simulations under Model 3, compared with the true generating probabilities and with each
other. The diagonal elements show the univariate distribution of the probability estimates.
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Fig 3b: Width of the interval defined by the 5t and 95t percentile of the simulation
distribution of each probability target over 1000 simulations under Model 3, under the
different fitted models, compared to each other. The diagonal elements show the univariate
distributions of this interval under each model

2N

4=

4



Counterfactual machines

Counterfactual arguments are the basis of our interpretation of regression coefficients.
Regression coefficients are interpreted to be the average change in outcome when a
predictor changes by one unit, all other predictors remaining the same. In other words, we
are asking what could happen if we change just one factor, everything else being equal. We
argue that, using probability machines, we can look directly at counterfactual outcomes in
the context of binary outcomes to see the counterfactual change in success probability for
each individual when one binary predictor is changed. The core idea can be extended easily
to continuous outcomes and conceptually to continuous predictors, which we will present
in a future manuscript.

Conceptually, we can consider two groups of individuals where each individual in one
group is identical to an individual in the other group, except for the value of one feature X;.
If this were possible, we could directly observe the changes in outcome in each person
resulting from changing the value of X; by merely observing their corresponding
doppelganger in the other group. Such experiments are carried out regularly in, for
example, comparing wild-type clonal mice versus mice where a particular gene is knocked
out, while treating both groups the same. Such experiments are of course not possible in
human population studies. We can, however, get a very good sense of how one’s
doppelganger would behave using predictive models. We train two predictive models, one
for individuals with X;=0 and one for individuals with X;=1. Each captures the feature
landscape, so to speak, and its relationship with the outcome in each subgroup. Now, if we
predict the outcome of an individual with X;=1 using the predictive model trained on the
X1=0 subgroup, it would be as if we supplanted this individual into the feature landscape of
the X;=0 group, and the prediction would be reflective of the relationship between this
feature landscape and the outcome, preserving all the other feature information about this
individual. In other words, we can mimic the behavior of this individual’s conceptual
doppelganger, and the difference between an individual’s observed outcome and their
predicted outcome using a predictive model trained on the other group would be the
counterfactual effect of X; on that individual.

We can operationalize the description above using RFPMs. Suppose we want to predict the
counterfactual outcomes for each individual when the value of the binary predictor Xj is
changed. We split the dataset into two subgroups Dy and D; based on whether X; is 0 or 1.
We now train identically specified RFPMs on each subgroup, calling the trained RFPMs PM,
and PM; respectively. Now, for binary data, we can’t directly observe the probability of
success, but we can estimate it based on our models. For an individual with X;=0, their
“observed” probability of success would be the prediction from PMy and their
counterfactual probability of success would be their prediction from PM;. We can similarly
compute the “observed” and counterfactual probabilities of success of an individual with
X1=1 using predictions from PM; and PM, respectively. Thus, for each individual, we can
compute under the RFPM model a probabilty pp and a probability p; of success under the
conditions X;=0 and X;=1 respectively.

Conceptually there is nothing in this operationalization that limits us to RFPMs or even
PMs. You could do the same exercise using a logistic model as well. However, a logistic



model would just give back estimates reflective of the chosen model structure provided it is
the correct model; it would merely be a self-fulfilling exercise. If the logistic model is
misspecified, this exercise will give you estimates which are different from what the model
provides. PMs provide non-parametric estimates without a particular model structure, so
this exercise can help find dependency patterns in the data without assumptions about
particular links or particular structural constraints like linearity.

Risk machines: Generating risk effect estimates using
probability machines

Logistic regression thrives on providing risk estimates, in particular conditional odds ratio
estimates, with respect to predictors within the model. Using the concept of counterfactual
machines described earlier, generating estimates of different risk estimates becomes
straightforward using probability machines. In fact, since we are able to get estimates of
both the observed and counterfactual probabilities of success pp and p;, we can actually
estimate any function of them, not just the odds ratio which is a constraint of the logistic or
multiplicative model. For example we can estimate conditional risk differences and risk
ratios at an individual level as well as odds ratios. More precisely, for each subject in the
study population, we can compute

1. therisk difference (RD): p; — py
2. theriskratio (RR): p;/po
3. the odds ratio (OR): p; (1 — po)/po(1 — p1)

We can compute group-specific estimates of each of these functions by averaging (mean or
median) the individual estimates over the members of the group; the overall conditional
estimates or main effects estimates are obtained by averaging over the entire study. Note
that since the estimation targets the feature-specific counterfactural probabilities per
subject, we are free to choose any function of them for our risk estimates. We call this
method generally the “two-machine method”, since we need to train 2 machines, one on
each subgroup defined by the predictor of interest Xj.

Often we are not interested in the overall main effect but in subject-specific effects, which
can lead to discovery as well as estimation of interactions. In fact, this is probably the more
frequent case. That is, the assumption that the effect of a feature is unaffected by all other
features - a pure main effects model - needs to be tested before it is believed.
Unfortunately computational difficulties in assessing complex interactions over a large
number of features under a logistic regression paradigm have made the main effects model
the de facto standard rather than something to be validated. Our scheme allows us to easily
obtain odds ratio estimates, or other risk function estimates, for subgroups defined by a
second feature or a set of features by merely averaging the individual odds ratio estimates
over each subgroup. This would then enable a very easy computation of the interaction
odds ratio. In this paper, we present a second method for interaction estimation that
directly leverages the counterfactual argument.



Consistency of each machine on its defining data set implies consistency of the risk
estimates. Discrete features in the data with more than the two levels [Yes, No] lead to
finitely more machines, yet the new calculations are straightforward. Features with
continuous values could be studied by binning the exposure data, but this approach too
often imposes an unacceptable loss of information and so requires further study.

Simulations

We followed the simulation set-up described earlier, and consider scenarios with only main
effects. Main effects odds ratios for each simulated data set were computed directly from
each logistic regression model (LR1 and LR2); for the RFPM, subject-specific odds ratio
estimates were obtained using two-machine counterfactual machines for each predictor,
and the main effect odds ratio estimates were obtained by averaging over the individual
odds ratio estimates. We report the results of the simulation study using Model 1, which
has 10 independent binary predictors, three non-null main effects and no interactions
between the predictors.

The simulated distributions for the estimated odds ratios for each method are shown in
Figure 4. We see that all the procedures evidently produce unbiased estimates, since
medians of estimated odds ratios were very close to the true values shown by the
horizontal lines. In terms of variability the RFPM model is quite competitive with the LR1
model, which is the true and correct generative model. The LR2 model is typically more
variable since it in effect pays a penalty for having to estimate all the two-way interactions
on the same sample.
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Fig 4: Simulated distributions of the odds ratios under Model 1 (3 main effects). LR1 are
estimates from a main effects logistic regression, LRZ are estimates from a main effects + two-
way interaction model, and RF are estimates using random forest counterfactual machines
for each of the three predictors

The main message here is that the two-machine counterfactual machine method can
reproduce the true odds ratios from the simulation in an unbiased manner, and have
efficiencies not much worse than the logistic main effects model, which is the data
generating modelA logistic model which is misspecified for the data generating model
produces both inaccurate predictions and biased effect estimates, even if the correct



predictors are included. Moreover, it is difficult to assess whether the model is misspecified
without further modeling and testing, a fact which is often unaccounted for in deriving
inference from the final model. The RFPM model where the correct predictors are included
accounts for the patterns in the data to provide accurate predictions and individual effect
size estimates. Aggregate estimates of main effects and interactions and exploration of
whether interactions are present can be done based on a single modeling run. . The
advantage that the risk machine method has is that it is not constrained by having to guess
the data generating model. In fact, in the simulation setting in Figure 3, where each of 8
predictor subgroups has a unique success probability, generated by a fully saturated model,
the risk machine can in fact estimate the subgroup-specific odds ratios accurately by using
an appropriate number of counterfactual machines (in this case, 23=8 machines) or by
averaging the individual odds ratio estimates over the appropriate subgroups from a single
machine run.

Interaction detection and estimation

Interaction estimation

[t is sometimes thought that nonparametric statistical learning machines cannot accurately
estimate effect sizes. As shown above using the two-machine method, consistency of the
probability machine, and therefore of the risk machine, demonstrates otherwise. It is effective as
a practical method for main effects odds ratio estimation, given logistic regression data over
binary predictors. Of course the multiple machine method for risk effect estimation is not
restricted to logistic regression data, and can be applied to any regression problem with binary
outcomes.

We now consider the problem of interactions. We will start be describing estimation of
multiplicative interactions as are seen in the logistic model context, for binary predictors. We
introduce a “4-machine method” analogous to the earlier 2-machine method to estimate
interaction effects. This works as follows. For estimating the interaction effect due to two binary
predictors X, and X, each taking values in {0,1}, parse the data into four groups defined by the
four possible values of X; and X,, that is the four subsets of the data defined by {X;, Xz} = {(0,
0), (0, 1), (1, 0), (1, 1)}. Fit a probability machine to each group separately. Note that within each
subgroup the values for {X;, X,} remain fixed, so the machine will not use the specific values
for either feature. The separate machines are distinctly constructed. They don’t see each other or
the data for the other groups: the separate model predictions for the probability of success in the
outcome are therefore conditional on the particular combinations of the predictors {X;, X»}. We
now estimate the probability of success of each individual using each of the 4 machines, arriving
at a vector of probabilities (poo, po1, P10, p11) for each individual. One of these represents the
observed probability and the others represents counterfactual probabilities under the other
(X1,X2) combinations. It is now straightforward to compute the interaction ratios for each
individual, which is the ratio of the odds ratios p11(1 - p10)/(1 - p11)p1o and poi(1 - poo)/(1 - po1)poo.
The overall odds ratio can be obtained by averaging these individual odds ratios over the study
population. This is in fact exactly analogous to the interaction effect estimated in a logistic
regression, apart from the log transformation applied to the odds ratios that is standard in logistic
regression.



We note here that we need to run 4 machines for each interaction estimation, in addition to an
overall machine which could be used to identify strongly predictive features. This is obviously
burdensome in many current contexts. Our philosophy is not to estimate all possible interactions,
but to identify particular “interesting” interactions based either on biology, previous results, or
the predictive power of the features based on a global run.

Intuitive model-free interaction detection

We now present a method for exploring the presence of interactions from a single machine
run. This method cannot be used directly for estimation, though the derived estimates
might be reasonably close to the truth, since accounting for counterfactual effects is not
done. We present this method using RFPM as our representative probability machine,
though other machines can be used just as effectively.

We will use RFPM to discover interactions visually and intuitively without invoking
parametric models using a single global machine run. We have seen that fitting a RFPM to
binary outcome regression data provides consistent estimates of the probability
Prob(Y=1/X). A single run only gives predictions of the conditional probabilities and not any
counterfactual predictions - it is not a counterfactual machine.

Consider our usual scenario where we have a binary outcome Y, whose expectation is
predicted using several binary predictors X;, X, . . ., X, and where we wish to explore the
interaction of X; and X on Y. Let each predictor take values in {0,1}. We first fit a single RFPM
to the data, and obtain estimates Prob(Y =1 | X) of the conditional probability of ¥ = 1. Next,
compute the average predicted probabilities conditional on the four possible combinations over
(X7, X>) and define

Poo = averageXS,__,Xplogit(Prob(Y | X1 =0,X; =0,X5,..,Xp))
Pio = averagexs,_._,xplogit(Prob(Y | X;1 =1,X;, =0,X5,..,Xp))
Po1 = averageXS,__,Xplogit(Prob(Y | X; =0,X; =1,X5,..,Xp))
P11 = averageXS,__,Xplogit(Prob(Y | X: =1,X, =1,X5,...,Xp))

Note that these are the subgroup-specific averages from a single probability machine run and not
counterfactual computations. An interaction plot is created by displaying these four values
against values of X;. As in classical analysis of variance, we check if the line joining py; and p;;,
is parallel to the line joining py and p;y. This is a check for multiplicative interactions. For
additive interactions, we replace the averages over the logit-transformed probabilities above with
the averages of the probability estimates themselves.

Simulations

Consider a logistic model with outcome Y and ten binary predictors Xj,...,X10 each with
P(Xi=1)=0.3, with main effects odds ratios of 1.3, 1.7, and 2.5 corresponding to X;, X> and X3,
and 1 for the rest. Call this Model 3. We add interaction odds ratios of 2 and 5



corresponding to the predictor pairs (X1,Xz) and (X2 X3), respectively to Model 3 and call it
Model 4. We generate 1000 data points under each model and repeat 1000 times.

We first generate interaction plots as described above for the (X;X?) interaction effect
under each of the two models for a particular simulated data set (Figure 5). The figures
indicate that there is no interaction effect between X; and Xz in Model 3 but some
multiplicative interaction in Model 4. These results were consistent across the simulated

data sets.

We can compute the classical contrast T = p11-p1o-poi+poo from the fitted machine. If the
lines are parallel, i.e., no multiplicative interaction, T should be 0. This contrast can be used
as an indicator to detect the presence of an interaction over pairs of features. In Model 3, T
= 0.004 (true value=0) and in Model 4 it is 0.747 (true value = 0.693) for the (X1 X>)

interaction.
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Figure 5: Interaction plots for the (X; X;) interaction under Model 3 (no true interaction) and Model 4 (Interaction odds
ratio=2). We find that the lines for Model 3 are reasonably parallel, whereas in Model 4 they are not, indicating presence of

multiplicative interaction. Note the y-axis are logit-transformed probabilities.

We can use the 4-machine method described earlier to estimate the interaction effects in Model
4. Figure 6 shows the results of the simulation study, where the box plots represent the simulated
estimates of the two interactions in the data generating model using the logistic regression model
LR2 (main effects + all two-way interactions) as used earlier, and the 4-machine RFPM-based
method, denoted RF. We find that in both the (X1,X2) and (X2X3) interactions, the logistic
regression estimate is biased slightly upwards, whereas the RFPM-based estimates are
accurate and have similar precision as the logistic regression based estimates. These
results show that RFPM-based methods, and indeed any consistent probability machine,
can be used within the 4-machine methodology to accurately detect and estimate
multiplicative interaction effects when they truly exist.



The discovery method leveraging interaction plots and the linear contrast can be used to
scan pairs of predictors to quickly find potentially interacting predictors, and the 4-
machine estimation method can be used to estimate the interaction effects for those
interacting predictors. We can visualize the sets of potentially interacting predictors using
a heatmap, where each axis has the set of predictors of interest and the color is based on
the magnitude of the linear contrast statistic T. Note that we can just as easily investigate
additive interaction under the same general scheme with exact same RFPM as before, with
no additional modeling runs; this is due to the fact that we are predicting the
counterfactual probabilities in a nonparametric, model-free manner and so can estimate
any particular function of them immediately. We are no longer limited by the logistic
model’s constraint of multiplicative interaction estimation.

The extension of this methodology to categorical predictors is straightforward. Plausible
and efficient extensions to continuous predictors are under study.

Discussion

We believe there are several advantages to the learning machine approach for risk effect
estimation. This approach leverages directly the concept of counterfactual estimates and
consistent predictive models to get predictions of the counterfactual probabilities. First,
since these predicted counterfactual probabilities are generated by probability machines
which are consistent, the individual counterfactual probability estimates should also be
consistent, within the respective contexts X=0 and X=1. Obtaining good estimates of these
individual probabilities grants us the flexibility of directly estimating different risk effect
functions, such as risk differences, risk ratios and odds ratios, that are all based on the
standard counterfactual argument. More precisely, these risk machine estimates are
nonparametric estimates of the population effects and are not influenced by assumptions
made in modeling as is essential for using classical logistic regression. This property also
allows us to empirically understand the nature of the effect in the additive, multiplicative or other
scale, rather than having to begin with an assumption of multiplicative interaction, as when using
logistic regression.

Second, one cannot typically assume that data is generated from purely main effects. Our
simulations show that if interactions are suspected, then RFPM is an accurate and more efficient
choice for estimating the conditional probabilities, and then for estimating the odds ratios, than is
the exploratory logistic regression, LR2, which includes all two-way interactions. Of course,
interactions need not be limited to two-way interactions, and including higher order interactions
in a logistic framework quickly increases the number of parameters to be estimated, hence
further reducing efficiency. The model-free risk machine approach also allows us to freely
consider complex nonlinear interactions, as when the odds ratios or risk ratios change
nonlinearly with another continuous predictor.

Third, the risk machine RFPM intrinsically incorporates higher order interactions in its tree and
forest based probability estimation and so can smoothly accommodate risk estimation over
higher order interactions, without having them inserted as features in the analysis before the
machine is applied to the data.



Fourth, note that for all the experiments described, the specification of the RFPM machine was
identical, in that we only tell the machine what the predictors are and identify the outcome:
nothing more is assumed as part of any model building approach. We can be entirely agnostic to
the generative mechanism of the data while invoking a nonparametric risk machine such as
RFPM and still end with good estimation and prediction. Such is not the case for a logistic
regression approach unless it estimates from a correct and fully specified model.

The risk machine approach, therefore, is an efficient and practical way to interrogate data with
binary outcomes, free of the usual hazard of model misspecification. Effectively the researcher
does not need to validate or calibrate a parametric model before efficient and unbiased risk
estimation can be studied, and the data analytic energy can be directed at consideration of what
makes functional sense for risk estimation across all the features.
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